Enhancement of Low-Light Images Using Illumination Estimate and Local Steering Kernel

被引:2
|
作者
Cheon, Bong-Won [1 ]
Kim, Nam-Ho [2 ]
机构
[1] Pukyong Natl Univ, Dept Intelligent Robot Engn, Pusan 48513, South Korea
[2] Pukyong Natl Univ, Sch Elect Engn, Pusan 48513, South Korea
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 20期
关键词
low-light image; enhancement; Retinex; steering kernel; image processing;
D O I
10.3390/app132011394
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Images acquired in low-light conditions often have poor visibility. These images considerably degrade the performance of algorithms when used in computer vision and multi-media systems. Several methods for low-light image enhancement have been proposed to address these issues; furthermore, various techniques have been used to restore close-to-normal light conditions or improve visibility. However, there are problems with the enhanced image, such as saturation of local light sources, color distortion, and amplified noise. In this study, we propose a low-light image enhancement technique using illumination component estimation and a local steering kernel to address this problem. The proposed method estimates the illumination components in low-light images and obtains the images with illumination enhancement based on Retinex theory. The resulting image is then color-corrected and denoised using a local steering kernel. To evaluate the performance of the proposed method, low-light images taken under various conditions are simulated using the proposed method, and it demonstrates visual and quantitative superiority to the existing methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Fractal pyramid low-light image enhancement network with illumination information
    Sun, Ting
    Fan, Guodong
    Gan, Min
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [32] Adaptive Variational Model for Contrast Enhancement of Low-Light Images
    Hsieh, Po-Wen
    Shao, Pei-Chiang
    Yang, Suh-Yuh
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (01): : 1 - 28
  • [33] Multiscale Fusion Method for the Enhancement of Low-Light Underwater Images
    Zhou, Jingchun
    Zhang, Dehuan
    Zhang, Weishi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [34] DLEN: DEEP LAPLACIAN ENHANCEMENT NETWORKS FOR LOW-LIGHT IMAGES
    Wei, Xinjie
    Chang, Kan
    Li, Guiqing
    Huang, Mengyuan
    Qin, Qingpao
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2120 - 2124
  • [35] Low-light images enhancement via a dense transformer network
    Huang, Yi
    Fu, Gui
    Ren, Wanchun
    Tu, Xiaoguang
    Feng, Ziliang
    Liu, Bokai
    Liu, Jianhua
    Zhou, Chao
    Liu, Yuang
    Zhang, Xiaoqiang
    DIGITAL SIGNAL PROCESSING, 2024, 148
  • [36] Enhancement and Noise Suppression of Single Low-Light Grayscale Images
    Nie, Ting
    Wang, Xiaofeng
    Liu, Hongxing
    Li, Mingxuan
    Nong, Shenkai
    Yuan, Hangfei
    Zhao, Yuchen
    Huang, Liang
    REMOTE SENSING, 2022, 14 (14)
  • [37] Low-Light Image Enhancement via Implicit Priors Regularized Illumination Optimization
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2023, 9 : 944 - 953
  • [38] ITRE: Low-light image enhancement based on illumination transmission ratio estimation
    Wang, Yu
    Wang, Yihong
    Liu, Tong
    Li, Jinyu
    Sui, Xiubao
    Chen, Qian
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [39] DICNet: achieve low-light image enhancement with image decomposition, illumination enhancement, and color restoration
    Pan, Heng
    Gao, Bingkun
    Wang, Xiufang
    Jiang, Chunlei
    Chen, Peng
    VISUAL COMPUTER, 2024, 40 (10): : 6779 - 6795
  • [40] ENHANCING LOW-LIGHT IMAGES USING INFRARED ENCODED IMAGES
    Tian, Shulin
    Wang, Yufei
    Wan, Renjie
    Yang, Wenhan
    Kot, Alex C.
    Wen, Bihan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 465 - 469