Single-Atom Catalysts on Covalent Organic Frameworks for CO2 Reduction

被引:13
|
作者
Wang, Rui [1 ]
Yuan, Yufei [1 ]
Bang, Ki-Taek [1 ]
Kim, Yoonseob [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Clear Water Bay, Hong Kong, Peoples R China
来源
ACS MATERIALS AU | 2023年 / 3卷 / 01期
关键词
Single-atom catalysts; CO2; reduction; Covalent organic frameworks; Macrocycles; Ligand coordination; CARBON-DIOXIDE; ELECTROREDUCTION; SITES; ELECTROCATALYST;
D O I
10.1021/acsmaterialsau.2c00061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The long-unresolved issue of CO2 release and the resulting atmospheric change can be solved through the application of effective catalysts. Thus, single-atom catalysts (SACs) have been rapidly developed for the CO2 reduction reaction (CO2RR), as they show improved catalytic metrics and enable the generation of C2+ products. Among numerous novel SACs, such as those based on graphene, metal-organic frameworks, and covalent organic frameworks (COFs), the COF-based SACs are the most promising owing to their high stability, porosity, and designability. Considering this, we describe two synthesis methods of COF-based SACs: ligand coordination and macrocycle backbone integration, and explore the pros and cons of each. We also propose routes for designing superior COF-based SACs and evaluate the factors influencing CO(2)RRs over COF-based SACs, such as metal loading and ligand types.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [31] Electronic Perturbation of Copper Single-Atom CO2 Reduction Catalysts in a Molecular Way
    Zou, Haiyuan
    Zhao, Gang
    Dai, Hao
    Dong, Hongliang
    Luo, Wen
    Wang, Lei
    Lu, Zhouguang
    Luo, Yi
    Zhang, Guozhen
    Duan, Lele
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (06)
  • [32] Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction
    Gu, Huoliang
    Wu, Jing
    Zhang, Liming
    NANO RESEARCH, 2022, 15 (11) : 9747 - 9763
  • [33] Single-atom catalysts: stimulating electrochemical CO2 reduction reaction in the industrial era
    Zhang, Zedong
    Wang, Dingsheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5863 - 5877
  • [34] Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO2
    Doherty, Francis
    Wang, Hui
    Yang, Ming
    Goldsmith, Bryan R.
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (17) : 5772 - 5791
  • [35] Theoretical Screening of Highly Efficient Single-Atom Catalysts Based on Covalent Triazine Frameworks for Oxygen Reduction
    Chen, Xin
    Luo, Liang
    Zhang, Yizhen
    Zhao, Xiuyun
    LANGMUIR, 2023, 39 (19) : 6905 - 6913
  • [36] Covalent Organic Frameworks for the Capture, Fixation, or Reduction of CO2
    Ozdemir, John
    Mosleh, Imann
    Abolhassani, Mojtaba
    Greenlee, Lauren F.
    Beitle, Robert R., Jr.
    Beyzavi, M. Hassan
    FRONTIERS IN ENERGY RESEARCH, 2019, 7
  • [37] Recent advances of single-atom catalysts in CO2 conversion
    Wang, Shunwu
    Wang, Ligang
    Wang, Dingsheng
    Li, Yadong
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (07) : 2759 - 2803
  • [38] Recent progress on single-atom catalysts for CO2 electroreduction
    Liu, Juan
    Cai, Yanming
    Song, Rongbin
    Ding, Shichao
    Lyu, Zhaoyuan
    Chang, Yu-Chung
    Tian, Hangyu
    Zhang, Xiao
    Du, Dan
    Zhu, Wenlei
    Zhou, Yang
    Lin, Yuehe
    Materials Today, 2021, 48 : 95 - 114
  • [39] Recent progress on single-atom catalysts for CO2 electroreduction
    Liu, Juan
    Cai, Yanming
    Song, Rongbin
    Ding, Shichao
    Lyu, Zhaoyuan
    Chang, Yu-Chung
    Tian, Hangyu
    Zhang, Xiao
    Du, Dan
    Zhu, Wenlei
    Zhou, Yang
    Lin, Yuehe
    MATERIALS TODAY, 2021, 48 : 95 - 114
  • [40] Mechanism insights on single-atom catalysts for CO2 conversion
    Wu, Qing
    Wu, Chongchong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (10) : 4876 - 4906