Uncertainty-aware visual analytics: scope, opportunities, and challenges

被引:6
|
作者
Maack, Robin G. C. [1 ]
Scheuermann, Gerik [2 ]
Hagen, Hans [1 ]
Penaloza, Jose Tiberio Hernandez [3 ]
Gillmann, Christina [2 ]
机构
[1] Univ Kaiserslautern, Comp G & HCI Grp, Erwin Schrodinger Str 52, D-67663 Kaiserslautern, Rhineland Palat, Germany
[2] Univ Leipzig, Image & Signal Proc Grp, Augustuspl10, D-04109 Leipzig, Saxony, Germany
[3] Univ Andes, IMAGINE Grp, Cra 1 18A 12, Bogota, Cundinamarca, Colombia
来源
VISUAL COMPUTER | 2023年 / 39卷 / 12期
关键词
Visual analytics; Uncertainty analysis; Uncertainty-aware visualization; VISUALIZATION; APPROXIMATION; PROVENANCE; FRAMEWORK; ERROR; MODEL;
D O I
10.1007/s00371-022-02733-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In many applications, visual analytics (VA) has developed into a standard tool to ease data access and knowledge generation. VA describes a holistic cycle transforming data into hypothesis and visualization to generate insights that enhance the data. Unfortunately, many data sources used in the VA process are affected by uncertainty. In addition, the VA cycle itself can introduce uncertainty to the knowledge generation process but does not provide a mechanism to handle these sources of uncertainty. In this manuscript, we aim to provide an extended VA cycle that is capable of handling uncertainty by quantification, propagation, and visualization, defined as uncertainty-aware visual analytics (UAVA). Here, a recap of uncertainty definition and description is used as a starting point to insert novel components in the visual analytics cycle. These components assist in capturing uncertainty throughout the VA cycle. Further, different data types, hypothesis generation approaches, and uncertainty-aware visualization approaches are discussed that fit in the defined UAVA cycle. In addition, application scenarios that can be handled by such a cycle, examples, and a list of open challenges in the area of UAVA are provided.
引用
收藏
页码:6345 / 6366
页数:22
相关论文
共 50 条
  • [21] Uncertainty-Aware Multidimensional Scaling
    Hagele D.
    Krake T.
    Weiskopf D.
    IEEE Transactions on Visualization and Computer Graphics, 2023, 29 (01) : 23 - 32
  • [22] Uncertainty-Aware Anticipation of Activities
    Abu Farha, Yazan
    Gall, Juergen
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1197 - 1204
  • [23] Uncertainty-Aware Image Captioning
    Fei, Zhengcong
    Fan, Mingyuan
    Zhu, Li
    Huang, Junshi
    Wei, Xiaoming
    Wei, Xiaolin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 614 - 622
  • [24] Uncertainty-aware circuit optimization
    Bai, XL
    Visweswariah, C
    Strenski, PN
    Hathaway, DJ
    39TH DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2002, 2002, : 58 - 63
  • [25] Uncertainty-Aware Panoptic Segmentation
    Sirohi, Kshitij
    Marvi, Sajad
    Buescher, Daniel
    Burgard, Wolfram
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05): : 2629 - 2636
  • [26] Uncertainty-aware Ramachandran Plots
    Maack, Robin G. C.
    Hagen, Hans
    Gillmann, Christina
    2019 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS 2019), 2019, : 227 - 231
  • [27] Uncertainty-Aware Depth Network for Visual Inertial Odometry of Mobile Robots
    Song, Jimin
    Jo, Hyunggi
    Jin, Yongsik
    Lee, Sang Jun
    SENSORS, 2024, 24 (20)
  • [28] Uncertainty-aware network alignment
    Zhou, Fan
    Li, Ce
    Wen, Zijing
    Zhong, Ting
    Trajcevski, Goce
    Khokhar, Ashfaq
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (12) : 7895 - 7924
  • [29] Uncertainty-aware Situational Understanding
    Tomsett, Richard
    Kaplan, Lance
    Cerutti, Federico
    Sullivan, Paul
    Vente, Daniel
    Vilamala, Marc Roig
    Kimmig, Angelika
    Preece, Alun
    Sensoy, Murat
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS, 2019, 11006
  • [30] Uncertainty-Aware Visual Perception System for Outdoor Navigation of the Visually Challenged
    Dimas, George
    Diamantis, Dimitris E.
    Kalozoumis, Panagiotis
    Iakovidis, Dimitris K.
    SENSORS, 2020, 20 (08)