Uncertainty-aware visual analytics: scope, opportunities, and challenges

被引:6
|
作者
Maack, Robin G. C. [1 ]
Scheuermann, Gerik [2 ]
Hagen, Hans [1 ]
Penaloza, Jose Tiberio Hernandez [3 ]
Gillmann, Christina [2 ]
机构
[1] Univ Kaiserslautern, Comp G & HCI Grp, Erwin Schrodinger Str 52, D-67663 Kaiserslautern, Rhineland Palat, Germany
[2] Univ Leipzig, Image & Signal Proc Grp, Augustuspl10, D-04109 Leipzig, Saxony, Germany
[3] Univ Andes, IMAGINE Grp, Cra 1 18A 12, Bogota, Cundinamarca, Colombia
来源
VISUAL COMPUTER | 2023年 / 39卷 / 12期
关键词
Visual analytics; Uncertainty analysis; Uncertainty-aware visualization; VISUALIZATION; APPROXIMATION; PROVENANCE; FRAMEWORK; ERROR; MODEL;
D O I
10.1007/s00371-022-02733-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In many applications, visual analytics (VA) has developed into a standard tool to ease data access and knowledge generation. VA describes a holistic cycle transforming data into hypothesis and visualization to generate insights that enhance the data. Unfortunately, many data sources used in the VA process are affected by uncertainty. In addition, the VA cycle itself can introduce uncertainty to the knowledge generation process but does not provide a mechanism to handle these sources of uncertainty. In this manuscript, we aim to provide an extended VA cycle that is capable of handling uncertainty by quantification, propagation, and visualization, defined as uncertainty-aware visual analytics (UAVA). Here, a recap of uncertainty definition and description is used as a starting point to insert novel components in the visual analytics cycle. These components assist in capturing uncertainty throughout the VA cycle. Further, different data types, hypothesis generation approaches, and uncertainty-aware visualization approaches are discussed that fit in the defined UAVA cycle. In addition, application scenarios that can be handled by such a cycle, examples, and a list of open challenges in the area of UAVA are provided.
引用
收藏
页码:6345 / 6366
页数:22
相关论文
共 50 条
  • [1] Uncertainty-aware visual analytics: scope, opportunities, and challenges
    Robin G. C. Maack
    Gerik Scheuermann
    Hans Hagen
    Jose Tiberio Hernández Peñaloza
    Christina Gillmann
    The Visual Computer, 2023, 39 : 6345 - 6366
  • [2] A framework for uncertainty-aware visual analytics of proteins
    Maack, Robin G. C.
    Raymer, Michael L.
    Wischgoll, Thomas
    Hagen, Hans
    Gillmann, Christina
    COMPUTERS & GRAPHICS-UK, 2021, 98 : 293 - 305
  • [3] A workflow to systematically design uncertainty-aware visual analytics applications
    Maack, Robin G. C.
    Raith, Felix
    Perez, Juan F.
    Scheuermann, Gerik
    Gillmann, Christina
    VISUAL COMPUTER, 2025, 41 (03): : 1485 - 1498
  • [4] Uncertainty-aware video visual analytics of tracked moving objects
    Hoeferlin, Markus
    Hoeferlin, Benjamin
    Weiskopf, Daniel
    Heidemann, Gunther
    JOURNAL OF SPATIAL INFORMATION SCIENCE, 2011, (02): : 87 - 117
  • [5] Lightweight, Uncertainty-Aware Conformalized Visual Odometry
    Stutts, Alex C.
    Erricolo, Danilo
    Tulabandhula, Theja
    Trivedi, Amit Ranjan
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 7742 - 7749
  • [6] Scope and Challenges of Visual Analytics: A Survey
    Mehrotra, Chitvan
    Chitransh, Nayan
    Ajayshankersingh
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2017, : 1229 - 1234
  • [7] Uncertainty-aware visual analytics for exploring human behaviors from heterogeneous spatial temporal data
    Chen, Siming
    Wang, Zuchao
    Liang, Jie
    Yuan, Xiaoru
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2018, 48 : 187 - 198
  • [8] Uncertainty-aware visual analysis of radiofrequency ablation simulations
    Ristovski, Gordan
    Garbers, Nicole
    Hahn, Horst K.
    Preusser, Tobias
    Linsen, Lars
    COMPUTERS & GRAPHICS-UK, 2019, 79 : 24 - 35
  • [9] Industry Paper: Uncertainty-Aware Event Analytics over Distributed Settings
    Giatrakos, Nikos
    Artikis, Alexander
    Deligiannakis, Antonios
    Garofalakis, Minos
    DEBS'19: PROCEEDINGS OF THE 13TH ACM INTERNATIONAL CONFERENCE ON DISTRIBUTED AND EVENT-BASED SYSTEMS, 2019, : 175 - 186
  • [10] Development of a prototype for uncertainty-aware geovisual analytics of land cover change
    Kinkeldey, Christoph
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2014, 28 (10) : 2076 - 2089