Asymptotics and Convergence for the Complex Monge-Ampère Equation

被引:0
|
作者
Han, Qing [1 ]
Jiang, Xumin [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Fordham Univ, Dept Math, Bronx, NY 10458 USA
基金
美国国家科学基金会;
关键词
Complex Monge-Ampere equation; Asymptotic behavior; Convergence; Kahler-Einstein metric; BLOW-UP SURFACES; BOUNDARY-REGULARITY; COMPACT; EXISTENCE; CURVATURE; BEHAVIOR;
D O I
10.1007/s40818-024-00171-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotics of complete Kahler-Einstein metrics on strictly pseudoconvex domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document} and derive a convergence theorem for solutions to the corresponding Monge-Ampere equation. If only a portion of the boundary is analytic, the solutions satisfy Gevrey type estimates for tangential derivatives. A counterexample for the model linearized equation suggests that there is no local convergence theorem for the complex Monge-Ampere equation.
引用
收藏
页数:64
相关论文
共 50 条