Asymptotics and Convergence for the Complex Monge-Ampère Equation

被引:0
|
作者
Han, Qing [1 ]
Jiang, Xumin [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Fordham Univ, Dept Math, Bronx, NY 10458 USA
基金
美国国家科学基金会;
关键词
Complex Monge-Ampere equation; Asymptotic behavior; Convergence; Kahler-Einstein metric; BLOW-UP SURFACES; BOUNDARY-REGULARITY; COMPACT; EXISTENCE; CURVATURE; BEHAVIOR;
D O I
10.1007/s40818-024-00171-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotics of complete Kahler-Einstein metrics on strictly pseudoconvex domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>n$$\end{document} and derive a convergence theorem for solutions to the corresponding Monge-Ampere equation. If only a portion of the boundary is analytic, the solutions satisfy Gevrey type estimates for tangential derivatives. A counterexample for the model linearized equation suggests that there is no local convergence theorem for the complex Monge-Ampere equation.
引用
收藏
页数:64
相关论文
共 50 条
  • [1] A complex parabolic type Monge-Ampère equation
    Spiliotis J.
    Applied Mathematics and Optimization, 1997, 35 (3): : 265 - 282
  • [2] Remarks on weak convergence of complex Monge-Ampère measures
    El Kadiri, Mohamed
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (01): : 28 - 36
  • [3] A property for the Monge-Ampère equation
    Daniele Puglisi
    Israel Journal of Mathematics, 2020, 236 : 959 - 965
  • [4] Some new estimates for the complex Monge-Ampère equation
    Xiuxiong Chen
    Jingrui Cheng
    Science China Mathematics, 2019, 62 : 2073 - 2088
  • [5] Some new estimates for the complex Monge-Ampère equation
    Xiuxiong Chen
    Jingrui Cheng
    Science China(Mathematics), 2019, 62 (11) : 2073 - 2088
  • [6] The equation of complex Monge-Ampère type and stability of solutions
    U. Cegrell
    S. Kołodziej
    Mathematische Annalen, 2006, 334 : 713 - 729
  • [7] Complex Monge-Ampère Equation in Strictly Pseudoconvex Domains
    Hoang-Son Do
    Thai Duong Do
    Hoang Hiep Pham
    Acta Mathematica Vietnamica, 2020, 45 : 93 - 101
  • [8] The global dirichlet problem for the complex Monge-Ampère equation
    Urban Cegrell
    Sławomir Kołodziej
    The Journal of Geometric Analysis, 1999, 9 (1): : 41 - 49
  • [9] Weak*- convergence of Monge-Ampère measures
    Urban Cegrell
    Mathematische Zeitschrift, 2006, 254 : 505 - 508
  • [10] Large solutions to complex Monge-Ampère equations: Existence, uniqueness and asymptotics
    Ni Xiang
    Xiaoping Yang
    Chinese Annals of Mathematics, Series B, 2011, 32 : 569 - 580