Accurate global and local 3D alignment of cryo-EM density maps using local spatial structural features

被引:3
|
作者
He, Bintao [1 ]
Zhang, Fa [2 ]
Feng, Chenjie [3 ]
Yang, Jianyi [1 ]
Gao, Xin [4 ]
Han, Renmin [1 ]
机构
[1] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
[2] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[3] Ningxia Med Univ, Coll Med Informat & Engn, Yinchuan 750004, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 23955, Saudi Arabia
基金
中国国家自然科学基金;
关键词
MIXTURE MODEL; HISTOGRAMS; SURFACE;
D O I
10.1038/s41467-024-45861-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in cryo-electron microscopy (cryo-EM) imaging technologies have led to a rapidly increasing number of cryo-EM density maps. Alignment and comparison of density maps play a crucial role in interpreting structural information, such as conformational heterogeneity analysis using global alignment and atomic model assembly through local alignment. Here, we present a fast and accurate global and local cryo-EM density map alignment method called CryoAlign, that leverages local density feature descriptors to capture spatial structure similarities. CryoAlign is a feature-based cryo-EM map alignment tool, in which the employment of feature-based architecture enables the rapid establishment of point pair correspondences and robust estimation of alignment parameters. Extensive experimental evaluations demonstrate the superiority of CryoAlign over the existing methods in terms of both alignment accuracy and speed. Density map alignment is a fundamental step in Cryo-EM data postprocessing. Here, authors propose an accurate global and local density map alignment method using local density features.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Residue-wise local quality estimation for protein models from cryo-EM maps
    Terashi, Genki
    Wang, Xiao
    Subramaniya, Sai Raghavendra Maddhuri Venkata
    Tesmer, John J. G.
    Kihara, Daisuke
    NATURE METHODS, 2022, 19 (09) : 1116 - +
  • [42] Quantifiying resolvability of atomic features in cryo-EM maps using Q-scores
    Pintilie, Grigore
    Schmid, Michael F.
    Chiu, Wah
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C58 - C58
  • [43] Enhancing cryo-EM maps with 3D deep generative networks for assisting protein structure modeling
    Subramaniya, Sai Raghavendra Maddhuri Venkata
    Terashi, Genki
    Kihara, Daisuke
    BIOINFORMATICS, 2023, 39 (08)
  • [44] Cryo-EM structure of a 3D DNA-origami object
    Bai, Xiao-chen
    Martin, Thomas G.
    Scheres, Sjors H. W.
    Dietz, Hendrik
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (49) : 20012 - 20017
  • [45] Optimal 3D angular sampling with applications to cryo-EM problems
    Titarenko, Valeriy
    Roseman, Alan M.
    JOURNAL OF STRUCTURAL BIOLOGY, 2024, 216 (02)
  • [46] A new cryo-EM system for electron 3D crystallography by eEFD
    Yonekura, Koji
    Ishikawa, Tetsuya
    Maki-Yonekura, Saori
    JOURNAL OF STRUCTURAL BIOLOGY, 2019, 206 (02) : 243 - 253
  • [47] 3D AB INITIO MODELING IN CRYO-EM BY AUTOCORRELATION ANALYSIS
    Levin, Eitan
    Bendory, Tamir
    Boumal, Nicolas
    Kileel, Joe
    Singer, Amit
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1569 - 1573
  • [48] Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction (vol 21, 534, 2020)
    Al-Azzawi, Adil
    Ouadou, Anes
    Duan, Ye
    Cheng, Jianlin
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [49] Global Conformational Changes of Ribosome Observed by Normal Mode Fitting for 3D Cryo-EM Structures
    Matsumoto, Atsushi
    Ishida, Hisashi
    STRUCTURE, 2009, 17 (12) : 1605 - 1613
  • [50] Tracing Beta Strands Using StrandTwister from Cryo-EM Density Maps at Medium Resolutions
    Si, Dong
    He, Jing
    STRUCTURE, 2014, 22 (11) : 1665 - 1676