Towards Mutual Trust-Based Matching For Federated Learning Client Selection

被引:1
|
作者
Wehbi, Osama [1 ,2 ]
Wahab, Omar Abdel [3 ]
Mourad, Azzam [2 ,4 ]
Otrok, Hadi [5 ]
Alkhzaimi, Hoda [6 ]
Guizani, Mohsen [1 ]
机构
[1] Mohammad Bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
[2] Lebanese Amer Univ, Dept CSM, Cyber Secur Syst & Appl AI Res Ctr, Beirut, Lebanon
[3] Polytech Montreal, Dept Comp & Software Engn, Montreal, PQ, Canada
[4] New York Univ, Div Sci, Abu Dhabi, U Arab Emirates
[5] Khalifa Univ, Ctr Cyber Phys Syst C2PS, Dept EECS, Abu Dhabi, U Arab Emirates
[6] New York Univ, Div Engn, Abu Dhabi, U Arab Emirates
关键词
Mutual trust; Game Theory; Smart-cities; Smart devices; Federated Learning; Bootstrapping;
D O I
10.1109/IWCMC58020.2023.10182581
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning (FL) is a revolutionary privacy-preserving distributed learning framework that allows a small group of users to cooperatively build a machine-learning model using their own data locally. Smart cities are areas that can generate high volume and critical data, which has the potential to revolutionize federated learning. Nevertheless, it is highly challenging to select a trustworthy group of clients to collaborate in model training. The utilization of a random selection technique would pose many threats due to malicious clients' targeted and untargeted attacks. Such vulnerability may cause attacks and poisoning in the produced model. To address this problem, we present a mutual trust client-server selection approach based on matching game theory and bootstrapping mechanisms for federated learning in smart cities. Our solution entails the creation of: (1) preference functions for federated servers and smart devices (i.e., IoT/IoV) that enables them to sort each other based on trust score, (2) light feedback-base technique that leverages the cooperation of multiple client devices to assign trust value to the newly connected federated server, and (3) intelligent matching algorithms consider trust preferences of both parties in their design. According to our simulation results, our technique outperforms the baseline selection approach VanillaFL in terms of increasing the trust level and hence the global accuracy of the federated learning model and optimizing the number of untrusted selected clients.
引用
收藏
页码:1112 / 1117
页数:6
相关论文
共 50 条
  • [21] Federated learning client selection algorithm based on gradient similarity
    Hu, Lingxi
    Hu, Yuanyuan
    Jiang, Linhua
    Long, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [22] Auction-based client selection for online Federated Learning
    Guo, Juncai
    Su, Lina
    Liu, Jin
    Ding, Jianli
    Liu, Xiao
    Huang, Bo
    Li, Li
    INFORMATION FUSION, 2024, 112
  • [23] Blockchain-based Secure Client Selection in Federated Learning
    Nguyen, Truc
    Thai, Phuc
    Jeter, Tre R.
    Dinht, Thang N.
    Thai, My T.
    2022 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (IEEE ICBC 2022), 2022,
  • [24] FedBoost: Bayesian Estimation Based Client Selection for Federated Learning
    Sheng, Yuhang
    Zeng, Lingguo
    Cao, Shuqin
    Dai, Qing
    Yang, Shasha
    Lu, Jianfeng
    IEEE ACCESS, 2024, 12 : 52255 - 52266
  • [25] Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in Federated Learning Client Selection
    Zhang, Shulai
    Li, Zirui
    Chen, Quan
    Zheng, Wenli
    Leng, Jingwen
    Guo, Minyi
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2021,
  • [26] Client Selection with Bandwidth Allocation in Federated Learning
    Kuang, Junqian
    Yang, Miao
    Zhu, Hongbin
    Qian, Hua
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [27] A review on client selection models in federated learning
    Panigrahi, Monalisa
    Bharti, Sourabh
    Sharma, Arun
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (06)
  • [28] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [29] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [30] An Efficient Client Selection for Wireless Federated Learning
    Chen, Jingyi
    Wang, Qiang
    Zhang, Wenqi
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 291 - 296