Data-driven segmentation of cortical calcium dynamics

被引:2
|
作者
Weiser, Sydney J. [1 ]
Mullen, Brian [1 ]
Ascencio, Desiderio J. [2 ,3 ]
Ackman, James [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Mol Cell & Dev Biol, Santa Cruz, CA 95064 USA
[2] Univ Calif Santa Cruz, Dept Psychol, Santa Cruz, CA USA
[3] CALTECH, Biol & Biol Engn, Pasadena, CA USA
基金
美国国家卫生研究院;
关键词
INDEPENDENT COMPONENT ANALYSIS; TRANSGENIC MICE; NEURAL ACTIVITY; NETWORKS; BEHAVIOR; SIGNALS; AREAS;
D O I
10.1371/journal.pcbi.1011085
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Demixing signals in transcranial videos of neuronal calcium flux across the cerebral hemispheres is a key step before mapping features of cortical organization. Here we demonstrate that independent component analysis can optimally recover neural signal content in widefield recordings of neuronal cortical calcium dynamics captured at a minimum sampling rate of 1.5x10(6) pixels per one-hundred millisecond frame for seventeen minutes with a magnification ratio of 1:1. We show that a set of spatial and temporal metrics obtained from the components can be used to build a random forest classifier, which separates neural activity and artifact components automatically at human performance. Using this data, we establish functional segmentation of the mouse cortex to provide a map of similar to 115 domains per hemisphere, in which extracted time courses maximally represent the underlying signal in each recording. Domain maps revealed substantial regional motifs, with higher order cortical regions presenting large, eccentric domains compared with smaller, more circular ones in primary sensory areas. This workflow of data-driven video decomposition and machine classification of signal sources can greatly enhance high quality mapping of complex cerebral dynamics.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] A data-driven study of temporal adverbials as discourse segmentation markers
    Ho-Dac, Lydia-Mai
    Pery-Woodley, Marie-Paule
    DISCOURS-REVUE DE LINGUISTIQUE PSYCHOLINGUISTIQUE ET INFORMATIQUE, 2009, (04):
  • [42] Large-scale Data-driven Segmentation of Banking Customers
    Hossain, Md Monir
    Sebestyen, Mark
    Mayank, Dhruv
    Ardakanian, Omid
    Khazaei, Hamzeh
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4392 - 4401
  • [43] Data-driven Segmentation of Consumers' Purchase Behaviour in the Retail Industry
    Carmichael, George
    Chen, Yu-wang
    Luo, Cheng
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 215 - 219
  • [44] Data-Driven Segmentation of Post-mortem Iris Images
    Trokielewicz, Mateusz
    Czajka, Adam
    2018 6TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS (IWBF), 2018,
  • [45] DATA-DRIVEN MARKET SEGMENTATION: THE CASE OF MEDICAL TOURISTS IN LEBANON
    Noaman, Samar Billi
    Jabbour, Mazen
    Range, Daniel
    Mataruna-Dos-Santos, Leonardo
    MARKET-TRZISTE, 2023, 35 (01): : 57 - 75
  • [46] Strong image segmentation from a data-driven perspective: Impossible?
    Zhou, Q
    Ma, LM
    Zhou, M
    Chelberg, D
    6TH IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 2004, : 56 - 60
  • [47] Data-driven respiratory gating for the uEXPLORER with fast dynamics
    Feng, Tao
    Yang, Gang
    Li, Hongdi
    Shi, Hongcheng
    Cherry, Simon
    Badawi, Ramsey
    Dong, Yun
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [48] Data-driven learning and control of nonlinear system dynamics
    Becerra-Mora, Yeyson A.
    Acosta, Jose angel
    NONLINEAR DYNAMICS, 2024,
  • [49] Understanding Business Ecosystem Dynamics: A Data-Driven Approach
    Basole, Rahul C.
    Russell, Martha G.
    Huhtamaki, Jukka
    Rubens, Neil
    Still, Kaisa
    Park, Hyunwoo
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2015, 6 (02)
  • [50] Data-driven discovery of emergent behaviors in collective dynamics
    Zhong, Ming
    Miller, Jason
    Maggioni, Mauro
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 411