Structure-aware attributed heterogeneous network embedding

被引:5
|
作者
Wei, Hao [1 ]
Xiong, Gang [1 ]
Wei, Qiang [1 ]
Cao, Weiquan [1 ]
Li, Xin [2 ]
机构
[1] Natl Key Lab Sci & Technol Blind Signal Proc, Chengdu 610041, Peoples R China
[2] Ningbo Univ Finance & Econ, Ningbo 315000, Zejiang, Peoples R China
关键词
Heterogeneous network; Network embedding; Graph embedding; Network representation learning;
D O I
10.1007/s10115-022-01810-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network embedding in heterogeneous network has recently attracted much attention due to its effectiveness in capturing the structure and inherent properties of networks. Most existing models focus on node proximity of networks. Nevertheless, in heterogeneous network, it contains different types (domains) of nodes and edges. The same types of nodes exhibit global patterns widely known as communities, and a community is intuitively identified as a group of nodes with more connections between its internal nodes compared with the external ones. Similarly, we assume that there is also an intermediate structure in the different types of nodes, which we call it as organization, and nodes in an organization interact more frequently than external ones. Thus, nodes within the same community and organization should have similar node embeddings. Inspired by this, we take the structural characteristics in heterogeneous network into consideration and propose a novel structure-aware Attributed Heterogeneous Network Embedding model (SAHNE). Specifically, we first introduce a random walk strategy based upon node degree to sample node sequences, which can better explore the community and organization information in heterogeneous network. Next, we design a structure-aware attributed heterogeneous network embedding model to simultaneously detect community and organization distribution of each node and learn embeddings of nodes, communities and organizations. Extensive experiments on three real-world heterogeneous networks demonstrate that SAHNE outperforms the state-of-the-art methods in terms of various datamining tasks.
引用
收藏
页码:1769 / 1785
页数:17
相关论文
共 50 条
  • [31] A Structure-Aware Convolutional Neural Network for Skin Lesion Classification
    Thandiackal, Kevin
    Goksel, Orcun
    OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 : 312 - 319
  • [32] Hierarchical label with imbalance and attributed network structure fusion for network embedding
    Zhao S.
    Chen J.
    Chen J.
    Zhang Y.
    Tang J.
    AI Open, 2022, 3 : 91 - 100
  • [33] Unified structure-aware feature learning for Graph Convolutional Network
    Huang, Sujia
    Xiao, Shunxin
    Chen, Yuhong
    Yang, Jinbin
    Shi, Zhibin
    Tan, Yanchao
    Wang, Shiping
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 254
  • [34] Structure-aware decoupled imputation network for multivariate time series
    Ahmed, Nourhan
    Schmidt-Thieme, Lars
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (03) : 1006 - 1026
  • [35] Structure-Aware Residual Pyramid Network for Monocular Depth Estimation
    Chen, Xiaotian
    Chen, Xuejin
    Zha, Zheng-Jun
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 694 - 700
  • [36] A Structure-Aware Generative Adversarial Network for Bilingual Lexicon Induction
    Han, Bocheng
    Tao, Qian
    Lie, Lusi
    Xiong, Zhihao
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 10763 - 10775
  • [37] Structure-aware decoupled imputation network for multivariate time series
    Nourhan Ahmed
    Lars Schmidt-Thieme
    Data Mining and Knowledge Discovery, 2024, 38 : 1006 - 1026
  • [38] Parallel structure-aware halftoning
    Wu, Huisi
    Wong, Tien-Tsin
    Heng, Pheng-Ann
    MULTIMEDIA TOOLS AND APPLICATIONS, 2013, 67 (03) : 529 - 547
  • [39] Attributed Signed Network Embedding
    Wang, Suhang
    Aggarwal, Charu
    Tang, Jiliang
    Liu, Huan
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 137 - 146
  • [40] Attributed Social Network Embedding
    Liao, Lizi
    He, Xiangnan
    Zhang, Hanwang
    Chua, Tat-Seng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (12) : 2257 - 2270