Network pharmacology combined with molecular docking simulations reveal the mechanism of action of Glycyrrhiza for treating pneumonia

被引:0
|
作者
Yang, Dongxin [1 ,2 ]
Li, Zhehong [3 ]
Peng, Yongrui [1 ,2 ]
Zhu, Xiaofeng [1 ,2 ]
Gong, Jun [1 ,2 ,4 ]
Chen, Cuilian [1 ,4 ]
机构
[1] YunFu Peoples Hosp, Cent Lab, Yunfu, Guangdong, Peoples R China
[2] Yunfu Tradit Chinese Med Hosp, Yunfu, Guangdong, Peoples R China
[3] Capital Med Univ, Beijing Shijitan Hosp, Dept Gen Surg, Beijing, Peoples R China
[4] YunFu Peoples Hosp, Cent Lab, Yunfu 527300, Guangdong, Peoples R China
关键词
Glycyrrhiza; MAPK14; molecular docking simulation; network pharmacology; pneumonia; TRADITIONAL CHINESE MEDICINE; RAGE; GLYCATION; RECEPTOR; PATHWAY;
D O I
10.1002/pep2.24342
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A well-established mechanism of action for managing pneumonia using Glycyrrhiza is unknown. Using network pharmacology and molecular docking simulations, we investigated the mechanism of action of Glycyrrhiza against pneumonia. To identify the targets of the active components of Glycyrrhiza from the Traditional Chinese Medicine Systems Pharmacology database, oral bioavailability and drug likeness were utilized as indicators. Pneumonia-associated genes were identified and screened from the databases. Integrated analysis was conducted to elucidate the relationship between the active components of Glycyrrhiza and intersecting genes; a comprehensive Glycyrrhiza active component-target gene relationship map was constructed. Intersecting genes underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses to examine their biological functions. A protein-protein interaction network map was constructed to identify hub genes. Molecular docking simulations were performed to investigate binding interactions between hub genes and their corresponding active components. Of the 96 overlapping genes, topological analysis revealed 10 hub genes. Glycyrrhiza exerts therapeutic effects through a multi-target and multipathway approach, suggesting a synergistic treatment for pneumonia. MAPK14 showed a favorable binding affinity with most of the active compounds, indicating that MAPK14 and related compounds in Glycyrrhiza have development potential.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Mechanism of Si Ni San Combined with Astragalus in Treating Hepatic Fibrosis: A Network Pharmacology and Molecular Docking Study
    Jin, Jiu
    Yu, Jiuwang
    Zhai, Chenxu
    Li, Honggang
    Chen, Zeyu
    Bao, Li-dao
    MOLECULAR BIOTECHNOLOGY, 2025, 67 (03) : 1077 - 1094
  • [22] Network pharmacology, molecular docking, and experimental verification reveal the mechanism of San-Huang decoction in treating acute kidney injury
    Liu, Jiahui
    Li, Zhongtang
    Lao, Yunlan
    Jin, Xiaoming
    Wang, Yuzhi
    Jiang, Beibei
    He, Riming
    Yang, Shudong
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [23] Network pharmacology and molecular docking reveal the mechanism of action of Bergapten against non-small cell lung cancer
    Chen, Yihao
    Fu, Yu
    Zou, Hongbo
    Wang, Pingsong
    Xu, Yao
    Xie, Qichao
    ONCOLOGY LETTERS, 2025, 29 (02)
  • [24] A network pharmacology and molecular docking approach to reveal the mechanism of Chaihu Anxin Capsule in depression
    Yang, Lin
    Zhao, Yan
    Qu, Ruochen
    Fu, Yan
    Zhou, Chunhua
    Yu, Jing
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [25] Network pharmacology, molecular docking and bioinformatics reveal the mechanism of Tripterygii Wilfordii against Osteosarcoma
    Zhang, Yafang
    Wei, Junqiang
    Kong, Lingwei
    Song, Mingze
    Zhang, Yange
    Xiao, Xiangyu
    Cao, Haiying
    Jin, Yu
    MEDICINE, 2022, 101 (52)
  • [26] Network pharmacology and molecular docking reveal potential mechanism of esculetin in the treatment of ulcerative colitis
    Cai, Ting
    Cai, Bin
    MEDICINE, 2023, 102 (45) : E35852
  • [27] Mechanism of action of Huangbaichen Sanwei formulation in treating T2DM based on network pharmacology and molecular docking
    Li, Chunnan
    Shen, Jiaming
    Jing, Xiaolong
    Zhang, Kaiyue
    Liu, Lu
    Wang, Yuelong
    Zhang, Hui
    Sun, Jiaming
    MEDICINE, 2023, 102 (46) : E36146
  • [28] Network Pharmacology and Molecular Docking Elucidate the Pharmacological Mechanism of the OSTEOWONDER Capsule for Treating Osteoporosis
    Fan, Jiashuang
    Zhou, Jianli
    Qu, Zhuan
    Peng, Hangya
    Meng, Shuhui
    Peng, Yaping
    Liu, Tengyan
    Luo, Qiu
    Dai, Lifen
    FRONTIERS IN GENETICS, 2022, 13
  • [29] Network pharmacology combined with molecular docking and experimental validation of the mechanism of action of columbianetin acetate in the treatment of ovarian cancer
    Hu, Mengling
    Wang, Luyao
    Zhang, Feiyue
    Xie, Yiluo
    Zhang, Tingting
    Liu, Hongli
    Li, Zhenghong
    Zhang, Jing
    FRONTIERS IN ONCOLOGY, 2025, 15
  • [30] Exploring the mechanism of genistein in treating hepatocellular carcinoma through network pharmacology and molecular docking
    Wang, Siliang
    Chen, Wenlian
    Dong, Changsheng
    Wu, Jia
    Zheng, Miaomiao
    Ma, Yushui
    Xue, Yuwen
    ONCOLOGIE, 2024, 26 (05) : 799 - 811