A novel deep convolutional encoder-decoder network: application to moving object detection in videos

被引:0
|
作者
Ganivada, Avatharam [1 ]
Yara, Srinivas [1 ]
机构
[1] Univ Hyderabad, Sch Comp & Informat Sci, Hyderabad 500046, Telangana, India
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 29期
关键词
Convolutional neural network; Deep learning; Object detection; Performance analysis; Video surveillance; NEURAL-NETWORKS;
D O I
10.1007/s00521-023-08956-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Moving object detection is one of the key applications of video surveillance. Deep convolutional neural networks have gained increasing attention in the field of video surveillance due to their effective feature learning ability. The performance of deep neural networks is often affected by the characteristics of videos like poor illumination and inclement weather conditions. It is important to design an innovative architecture of deep neural networks to deal with the videos effectively. Here, the convolutional layers for the networks require to be in an appropriate number and it's important to determine the number. In this study, we propose a customized deep convolutional encoder-decoder network, say CEDSegNet, for moving object detection in a video sequence. Here, the CEDSegNet is based on SegNet, and its encoder and decoder parts are chosen to be two. By customizing the SegNet with two encoder and decoder parts, the proposed CEDSegNet improves detection performance, where its parameters are reduced to an extent. The two encoder and decoder parts function towards generating feature maps preserving the fine details of object pixels in videos. The proposed CEDSegNet is tested on multiple video sequences of the CDNet dataset2012. The results obtained using CEDSegNet for moving object detection in the video frames are interpreted qualitatively. Further, the performance of CEDSegNet is evaluated using several quantitative indices. Both the qualitative and quantitative results demonstrate that the performance of CEDSegNet is superior to the state-of-the-network models, VGG16, VGG19, ResNet18 and ResNet50.
引用
收藏
页码:22027 / 22041
页数:15
相关论文
共 50 条
  • [21] Semantic Segmentation of Anaemic RBCs Using Multilevel Deep Convolutional Encoder-Decoder Network
    Shahzad, Muhammad
    Umar, Arif Iqbal
    Shirazi, Syed Hamad
    Shaikh, Israr Ahmed
    IEEE ACCESS, 2021, 9 : 161326 - 161341
  • [22] Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction
    Ines Njeh
    Hiba Mzoughi
    Mohamed Ben Slima
    Ahmed Ben Hamida
    Chokri Mhiri
    Kheireddine Ben Mahfoudh
    Medical & Biological Engineering & Computing, 2021, 59 : 85 - 106
  • [23] Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction
    Njeh, Ines
    Mzoughi, Hiba
    Ben Slima, Mohamed
    Ben Hamida, Ahmed
    Mhiri, Chokri
    Ben Mahfoudh, Kheireddine
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (01) : 85 - 106
  • [24] A Convolutional Encoder-Decoder Network With Skip Connections for Saliency Prediction
    Qi, Fei
    Lin, Chunhuan
    Shi, Guangming
    Li, Hao
    IEEE ACCESS, 2019, 7 : 60428 - 60438
  • [25] Deep Hierarchical Encoder-Decoder Network for Image Captioning
    Xiao, Xinyu
    Wang, Lingfeng
    Ding, Kun
    Xiang, Shiming
    Pan, Chunhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (11) : 2942 - 2956
  • [26] Automatic Crack Detection and Measurement of Concrete Structure Using Convolutional Encoder-Decoder Network
    Li, Shengyuan
    Zhao, Xuefeng
    IEEE ACCESS, 2020, 8 : 134602 - 134618
  • [27] RESIDUAL ENCODER-DECODER NETWORK FOR DEEP SUBSPACE CLUSTERING
    Yang, Shuai
    Zhu, Wenqi
    Zhu, Yuesheng
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2895 - 2899
  • [28] Light field intrinsics with a deep encoder-decoder network
    Alperovich, Anna
    Johannsen, Ole
    Strecke, Michael
    Goldluecke, Bastian
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9145 - 9154
  • [29] Multi-Scale Attention and Encoder-Decoder Network for Video Saliency Object Detection
    Hongbo Bi
    Huihui Zhu
    Lina Yang
    Ranwan Wu
    Pattern Recognition and Image Analysis, 2022, 32 : 340 - 350
  • [30] Multi-Scale Attention and Encoder-Decoder Network for Video Saliency Object Detection
    Bi, Hongbo
    Zhu, Huihui
    Yang, Lina
    Wu, Ranwan
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (02) : 340 - 350