ANALYTIC SPREAD OF FILTRATIONS ON TWO-DIMENSIONAL NORMAL LOCAL RINGS

被引:1
|
作者
Cutkosky, Steven Dale [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
14B05; 13A18; 14B25; ZARISKI DECOMPOSITION; DIVISORS;
D O I
10.1017/nmj.2022.35
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that a classical theorem by McAdam about the analytic spread of an ideal in a Noetherian local ring continues to be true for divisorial filtrations on a two-dimensional normal excellent local ring R, and that the Hilbert polynomial of the fiber cone of a divisorial filtration on R has a Hilbert function which is the sum of a linear polynomial and a bounded function. We prove these theorems by first studying asymptotic properties of divisors on a resolution of singularities of the spectrum of R. The filtration of the symbolic powers of an ideal is an example of a divisorial filtration. Divisorial filtrations are often not Noetherian, giving a significant difference in the classical case of filtrations of powers of ideals and divisorial filtrations.
引用
收藏
页码:239 / 268
页数:30
相关论文
共 50 条
  • [42] AUTOMORPHISMS OF TWO-DIMENSIONAL LINEAR-GROUPS OVER SEMI-LOCAL RINGS
    YOU, H
    WANG, RF
    KEXUE TONGBAO, 1983, 28 (01): : 132 - 132
  • [43] Constancy regions of mixed multiplier ideals in two-dimensional local rings with rational singularities
    Alberich-Carraminana, Maria
    Alvarez Montaner, Josep
    Dachs-Cadefau, Ferran
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (2-3) : 245 - 263
  • [44] Two-dimensional local density of states in two-dimensional photonic crystals
    Asatryan, AA
    Fabre, S
    Busch, K
    McPhedran, RC
    Botten, LC
    de Sterke, CM
    Nicorovici, NAP
    OPTICS EXPRESS, 2001, 8 (03): : 191 - 196
  • [45] Microwave response of two-dimensional electron rings
    Kovalskii, V. A.
    Gubarev, S. I.
    Kukushkin, I. V.
    Mikhailov, S. A.
    Smet, J. H.
    von Klitzing, K.
    Wegscheider, W.
    PHYSICAL REVIEW B, 2006, 73 (19):
  • [46] Vortex rings in two-dimensional harmonic traps
    Manninen, M.
    Koskinen, M.
    Yu, Y.
    Reimann, S. M.
    PHYSICA SCRIPTA, 2006, T125 : 31 - 36
  • [47] Some examples of two-dimensional regular rings
    Dumitrescu, Tiberiu
    Tonescu, Cristodor
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (03): : 271 - 277
  • [48] Localization of tight closure in two-dimensional rings
    Kamran Divaani-Aazar
    Massoud Tousi
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2005, 115 : 51 - 56
  • [49] Localization of tight closure in two-dimensional rings
    Divaani-Aazar, K
    Tousi, M
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (01): : 51 - 56
  • [50] Analytic form of a two-dimensional critical distribution
    Bramwell, Steven T.
    PHYSICAL REVIEW E, 2022, 105 (03)