Globally balancing spanning trees

被引:0
|
作者
Hoersch, Florian [1 ]
机构
[1] Tech Univ Ilmenau, Weimarer Str 25, D-98693 Ilmenau, Germany
关键词
D O I
10.1016/j.ejc.2022.103644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for every graph G that contains two edge-disjoint spanning trees, we can choose two edge-disjoint spanning trees T1, T2 of G such that |dT1(v) - dT2(v)| <= 5 for all v E V(G). We also prove the more general statement that for every positive integer k, there is a constant ck E O(log k) such that for every graph G that contains k edge-disjoint spanning trees, we can choose k edge-disjoint spanning trees T1, ... , Tk of G satisfying |dTi(v)- dTj(v)| <= ck for all v E V(G) and i,j E {1,. ..,k}. This resolves a conjecture of Kriesell. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Spanning trees and optimization problems
    Silva, D
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2006, 57 (02) : 227 - 228
  • [32] Spanning trees in dense graphs
    Komlós, J
    Sárközy, GN
    Szemerédi, E
    COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (05): : 397 - 416
  • [33] ON THE DIAMETERS OF SPANNING-TREES
    SANKARAN, V
    KRISHNAMOORTHY, V
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (10): : 1060 - 1062
  • [34] The number of spanning trees in a superprism
    Bogdanowicz, Zbigniew R.
    DISCRETE MATHEMATICS LETTERS, 2024, 13 : 66 - 73
  • [35] Spanning trees with many leaves
    Karpov D.V.
    Journal of Mathematical Sciences, 2011, 179 (5) : 616 - 620
  • [36] Leafy spanning trees in hypercubes
    Duckworth, W
    Dunne, PE
    Gibbons, AM
    Zito, M
    APPLIED MATHEMATICS LETTERS, 2001, 14 (07) : 801 - 804
  • [37] ON INDEPENDENT SPANNING-TREES
    KHULLER, S
    SCHIEBER, B
    INFORMATION PROCESSING LETTERS, 1992, 42 (06) : 321 - 323
  • [38] ENDS IN SPANNING-TREES
    YU, XX
    DISCRETE MATHEMATICS, 1992, 104 (03) : 327 - 328
  • [39] Some results on spanning trees
    Bing Yao
    Zhong-fu Zhang
    Jian-fang Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 607 - 616
  • [40] The number of spanning trees of a graph
    Kinkar C Das
    Ahmet S Cevik
    Ismail N Cangul
    Journal of Inequalities and Applications, 2013