Real-world evaluation of an algorithmic machine-learning-guided testing approach in stable chest pain: a multinational, multicohort study

被引:5
|
作者
Oikonomou, Evangelos K. [1 ]
Aminorroaya, Arya [1 ]
Dhingra, Lovedeep S. [1 ]
Partridge, Caitlin [2 ]
Velazquez, Eric J. [1 ]
Desai, Nihar R. [1 ]
Krumholz, Harlan M. [1 ,3 ]
Miller, Edward J. [1 ]
Khera, Rohan [1 ,3 ,4 ,5 ]
机构
[1] Yale Sch Med, Dept Internal Med, Sect Cardiovasc Med, 333 Cedar St,POB 208017, New Haven, CT 06520 USA
[2] Yale Ctr Clin Invest, 2 Church St South, New Haven, CT 06519 USA
[3] Yale New Haven Hosp, Ctr Outcomes Res & Evaluat, 195 Church St 5th Floor, New Haven, CT 06510 USA
[4] Yale Sch Med, Sect Biomed Informat & Data Sci, 100 Coll St, New Haven, CT 06511 USA
[5] Yale Sch Publ Hlth, Dept Biostat, Sect Hlth Informat, 60 Coll St, New Haven, CT 06510 USA
来源
基金
美国国家卫生研究院;
关键词
Machine learning; Chest pain; Artificial intelligence; Clinical decision support; APPROPRIATE USE CRITERIA; PHENOMAPPING-DERIVED TOOL; COMPUTED-TOMOGRAPHY; CT ANGIOGRAPHY; CORONARY; RISK; BIAS;
D O I
10.1093/ehjdh/ztae023
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims An algorithmic strategy for anatomical vs. functional testing in suspected coronary artery disease (CAD) (Anatomical vs. Stress teSting decIsion Support Tool; ASSIST) is associated with better outcomes than random selection. However, in the real world, this decision is rarely random. We explored the agreement between a provider-driven vs. simulated algorithmic approach to cardiac testing and its association with outcomes across multinational cohorts. Methods and results In two cohorts of functional vs. anatomical testing in a US hospital health system [Yale; 2013-2023; n = 130 196 (97.0%) vs. n = 4020 (3.0%), respectively], and the UK Biobank [n = 3320 (85.1%) vs. n = 581 (14.9%), respectively], we examined outcomes stratified by agreement between the real-world and ASSIST-recommended strategies. Younger age, female sex, Black race, and diabetes history were independently associated with lower odds of ASSIST-aligned testing. Over a median of 4.9 (interquartile range [IQR]: 2.4-7.1) and 5.4 (IQR: 2.6-8.8) years, referral to the ASSIST-recommended strategy was associated with a lower risk of acute myocardial infarction or death (hazard ratio(adjusted): 0.81, 95% confidence interval [CI] 0.77-0.85, P < 0.001 and 0.74 [95% CI 0.60-0.90], P = 0.003, respectively), an effect that remained significant across years, test types, and risk profiles. In post hoc analyses of anatomical-first testing in the Prospective Multicentre Imaging Study for Evaluation of Chest Pain (PROMISE) trial, alignment with ASSIST was independently associated with a 17% and 30% higher risk of detecting CAD in any vessel or the left main artery/proximal left anterior descending coronary artery, respectively. Conclusion In cohorts where historical practices largely favour functional testing, alignment with an algorithmic approach to cardiac testing defined by ASSIST was associated with a lower risk of adverse outcomes. This highlights the potential utility of a data-driven approach in the diagnostic management of CAD.
引用
收藏
页码:303 / 313
页数:11
相关论文
共 50 条
  • [11] A study of real-world micrograph data quality and machine learning model robustness
    Zhong, Xiaoting
    Gallagher, Brian
    Eves, Keenan
    Robertson, Emily
    Mundhenk, T. Nathan
    Han, T. Yong-Jin
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [12] A study of real-world micrograph data quality and machine learning model robustness
    Xiaoting Zhong
    Brian Gallagher
    Keenan Eves
    Emily Robertson
    T. Nathan Mundhenk
    T. Yong-Jin Han
    npj Computational Materials, 7
  • [13] Machine learning approach to identify malaria risk in travelers using real-world evidence
    Fleitas, Pedro Emanuel
    Sarasola, Leire Balerdi
    Ferrer, Daniel Camprubi
    Munoz, Jose
    Petrone, Paula
    HELIYON, 2024, 10 (07)
  • [14] Automating Fault Prediction in Software Testing using Machine Learning Techniques: A Real-World Applications
    Panda, Prasanta
    Sahoo, Debaryaan
    Sahoo, Debarjun
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 841 - 844
  • [15] Fuzzy Machine Learning Model in Real-World Physical Domains; A State-of-the-Art Approach
    Dhote, Sunita
    Pais, Rupesh
    Vichoray, Chandan
    Baskar, S.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2021, 29 (06) : 989 - 1013
  • [16] Machine learning-based approach for glioblastoma drug repurposing on real-world patient data
    Lin, Ko-Hong
    Kim, Yejin
    Lee, Dung-Fang
    Jiang, Xiaoqian
    CANCER RESEARCH, 2023, 83 (08)
  • [17] Approach to machine learning for extraction of real-world data variables from electronic health records
    Adamson, Blythe
    Waskom, Michael
    Blarre, Auriane
    Kelly, Jonathan
    Krismer, Konstantin
    Nemeth, Sheila
    Gippetti, James
    Ritten, John
    Harrison, Katherine
    Ho, George
    Linzmayer, Robin
    Bansal, Tarun
    Wilkinson, Samuel
    Amster, Guy
    Estola, Evan
    Benedum, Corey M.
    Fidyk, Erin
    Estevez, Melissa
    Shapiro, Will
    Cohen, Aaron B.
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [18] Machine Learning Prediction of Early Recurrence in Gastric Cancer: A Nationwide Real-World Study
    Zhang, Xing-Qi
    Huang, Ze-Ning
    Wu, Ju
    Liu, Xiao-Dong
    Xie, Rong-Zhen
    Wu, Ying-Xin
    Zheng, Chang-Yue
    Zheng, Chao-Hui
    Li, Ping
    Xie, Jian-Wei
    Wang, Jia-Bin
    He, Qi-Chen
    Qiu, Wen-Wu
    Tang, Yi-Hui
    Zhang, Hao-Xiang
    Zhou, Yan-Bing
    Lin, Jian-Xian
    Huang, Chang-Ming
    ANNALS OF SURGICAL ONCOLOGY, 2025, 32 (04) : 2637 - 2650
  • [19] Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls
    Palmerini, Luca
    Klenk, Jochen
    Becker, Clemens
    Chiari, Lorenzo
    SENSORS, 2020, 20 (22) : 1 - 15
  • [20] Uncertainty-aware approach for multiple imputation using conventional and machine learning models: a real-world data study
    Romen Samuel Wabina
    Panu Looareesuwan
    Suphachoke Sonsilphong
    Htun Teza
    Wanchana Ponthongmak
    Gareth McKay
    John Attia
    Anuchate Pattanateepapon
    Anupol Panitchote
    Ammarin Thakkinstian
    Journal of Big Data, 12 (1)