PARALLEL GRAPH ATTENTION NETWORK MODEL BASED ON PIXEL AND SUPERPIXEL FEATURE FUSION FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:2
|
作者
Ma, Lisong [1 ]
Wang, Qingyan [1 ]
Zhang, Junping [2 ]
Wang, Yujing [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Measurement Control & Commun Engn, Harbin, Peoples R China
[2] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph attention network; hyperspectral image classification; pixel; superpixel;
D O I
10.1109/IGARSS52108.2023.10281728
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
With the development of hyperspectral sensors, there is an increasing amount of accessible hyperspectral data, and the classification task for land cover categories has gained significant attention. Existing classification methods typically extract features from either the pixel or superpixel perspective. However, using a single-scale feature extraction approach fails to simultaneously consider both local and global features of land cover, leading to suboptimal classification results. To address this issue, this paper proposes a parallel graph attention network model based on pixel and superpixel feature fusion (SSPGAT) for hyperspectral image classification, which leverages the fusion of pixel-level and superpixel-level features. The proposed approach first employs spectral convolutional layers to reduce the redundant spectral dimension. Then, it utilizes graph attention network (GAT) to extract local and global features of land cover separately from the pixel and superpixel perspectives. Finally, a fully connected network is employed to classify the fused features from both branches. Experimental results on two different datasets demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:7226 / 7229
页数:4
相关论文
共 50 条
  • [21] HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network
    Kong, Yi
    Ji, Dingzhe
    Cheng, Yuhu
    Wang, Xuesong
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (04) : 1426 - 1434
  • [22] Hyperspectral Image Classification Based on Deep Attention Graph Convolutional Network
    Bai, Jing
    Ding, Bixiu
    Xiao, Zhu
    Jiao, Licheng
    Chen, Hongyang
    Regan, Amelia C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [23] Probabilistic Fusion of Pixel-Level and Superpixel-Level Hyperspectral Image Classification
    Li, Shutao
    Lu, Ting
    Fang, Leyuan
    Jia, Xiuping
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 7416 - 7430
  • [24] Hyperspectral Image Classification Based on Fusion of Convolutional Neural Network and Graph Network
    Gao, Luyao
    Xiao, Shulin
    Hu, Changhong
    Yan, Yang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [25] Triple-Attention-Based Parallel Network for Hyperspectral Image Classification
    Qu, Lei
    Zhu, Xingliang
    Zheng, Jiannan
    Zou, Liang
    REMOTE SENSING, 2021, 13 (02) : 1 - 24
  • [26] Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification
    Liu, Jie
    Guan, Renxiang
    Li, Zihao
    Zhang, Jiaxuan
    Hu, Yaowen
    Wang, Xueyong
    REMOTE SENSING, 2023, 15 (23)
  • [27] Graph Fusion Based Hyperspectral Image Classification
    Luo, Haokun
    He, Lin
    Yu, Long
    MIPPR 2019: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2020, 11432
  • [28] Feature Fusion via Deep Residual Graph Convolutional Network for Hyperspectral Image Classification
    Chen, Rong
    Guanghui, Li
    Dai, Chenglong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [29] Feature Fusion via Deep Residual Graph Convolutional Network for Hyperspectral Image Classification
    Chen, Rong
    Guanghui, Li
    Dai, Chenglong
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [30] Hyperspectral Image Classification Based on Multibranch Adaptive Feature Fusion Network
    Li, Chen
    Wang, Yi
    Fang, Zhice
    Li, Penglei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62