A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning

被引:15
|
作者
Al-Timemy, Ali H. [1 ]
Alzubaidi, Laith [2 ,3 ]
Mosa, Zahraa M. [4 ]
Abdelmotaal, Hazem [5 ]
Ghaeb, Nebras H. [1 ]
Lavric, Alexandru [6 ]
Hazarbassanov, Rossen M. [7 ,8 ]
Takahashi, Hidenori [9 ]
Gu, Yuantong [2 ,3 ]
Yousefi, Siamak [10 ,11 ]
机构
[1] Univ Baghdad, Al Khwarizmi Coll Engn, Biomed Engn Dept, Baghdad, Iraq
[2] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, ARC Ind Transformat Training Ctr, Joint Biomech, Brisbane, Qld 4000, Australia
[4] Al Nahrain Univ, Coll Sci, Dept Phys, Baghdad, Iraq
[5] Assiut Univ, Dept Ophthalmol, Assiut 71526, Egypt
[6] Stefan Cel Mare Univ Suceava, Comp Elect & Automat Dept, Suceava 720229, Romania
[7] Univ Anhembi Morumbi, Med Sch, BR-03101001 Sao Paulo, Brazil
[8] Univ Fed Sao Paulo, Paulista Med Sch, Dept Ophthalmol & Visual Sci, BR-04021001 Sao Paulo, Brazil
[9] Jichi Med Univ, Dept Ophthalmol, Shimotsuke, Tochigi 3290431, Japan
[10] Univ Tennessee, Hlth Sci Ctr, Dept Ophthalmol, Memphis, TN 38163 USA
[11] Univ Tennessee, Hlth Sci Ctr, Dept Genet Genom & Informat, Memphis, TN 38163 USA
关键词
convolutional neural networks; keratoconus; feature fusion; transfer learning; deep learning; machine learning; CORNEAL TOPOGRAPHY; RAW DATA; CLASSIFICATION;
D O I
10.3390/diagnostics13101689
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97-100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with 213 eyes examined in Iraq and obtained AUCs of 0.91-0.92 and an accuracy range of 88-92%. The proposed model is a step toward improving the detection of clinical and subclinical forms of KCN.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Deep Learning Based Feature Envy Detection
    Liu, Hui
    Xu, Zhifeng
    Zou, Yanzhen
    PROCEEDINGS OF THE 2018 33RD IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMTED SOFTWARE ENGINEERING (ASE' 18), 2018, : 385 - 396
  • [32] A Smart Contract Vulnerability Detection Method Based on Multimodal Feature Fusion and Deep Learning
    Li, Jinggang
    Lu, Gehao
    Gao, Yulian
    Gao, Feng
    MATHEMATICS, 2023, 11 (23)
  • [33] Detection of Polycystic Ovarian Disease Using Probabilistic Optimum Deep Learning Feature Fusion
    Jothimani, S.
    Sangeethaa, S. N.
    Balamurugan, M.
    Kayalvili, S.
    IETE JOURNAL OF RESEARCH, 2025,
  • [34] Enhanced deep transfer learning with multi-feature fusion for lung disease detection
    Vidyasri, S.
    Saravanan, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (19) : 56321 - 56345
  • [35] Enhanced deep transfer learning with multi-feature fusion for lung disease detection
    Vidyasri, S.
    Saravanan, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023,
  • [36] Deep learning model with multi-feature fusion and label association for suicide detection
    Li, Zepeng
    Cheng, Wenchuan
    Zhou, Jiawei
    An, Zhengyi
    Hu, Bin
    MULTIMEDIA SYSTEMS, 2023, 29 (04) : 2193 - 2203
  • [37] Sewer pipe defect detection via deep learning with local and global feature fusion
    Li, Dawei
    Xie, Qian
    Yu, Zhenghao
    Wu, Qiaoyun
    Zhou, Jun
    Wang, Jun
    AUTOMATION IN CONSTRUCTION, 2021, 129
  • [38] A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion
    Liu, Xiu
    Gu, Liang
    Gong, Xin
    An, Long
    Gao, Xurui
    Wu, Juying
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 4045 - 4061
  • [39] Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion
    Wang X.
    Wang Y.
    Chen X.
    Zang C.
    Cui G.
    Journal of Radars, 2024, 13 (03) : 554 - 564
  • [40] Deep learning model with multi-feature fusion and label association for suicide detection
    Zepeng Li
    Wenchuan Cheng
    Jiawei Zhou
    Zhengyi An
    Bin Hu
    Multimedia Systems, 2023, 29 : 2193 - 2203