A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning

被引:15
|
作者
Al-Timemy, Ali H. [1 ]
Alzubaidi, Laith [2 ,3 ]
Mosa, Zahraa M. [4 ]
Abdelmotaal, Hazem [5 ]
Ghaeb, Nebras H. [1 ]
Lavric, Alexandru [6 ]
Hazarbassanov, Rossen M. [7 ,8 ]
Takahashi, Hidenori [9 ]
Gu, Yuantong [2 ,3 ]
Yousefi, Siamak [10 ,11 ]
机构
[1] Univ Baghdad, Al Khwarizmi Coll Engn, Biomed Engn Dept, Baghdad, Iraq
[2] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, ARC Ind Transformat Training Ctr, Joint Biomech, Brisbane, Qld 4000, Australia
[4] Al Nahrain Univ, Coll Sci, Dept Phys, Baghdad, Iraq
[5] Assiut Univ, Dept Ophthalmol, Assiut 71526, Egypt
[6] Stefan Cel Mare Univ Suceava, Comp Elect & Automat Dept, Suceava 720229, Romania
[7] Univ Anhembi Morumbi, Med Sch, BR-03101001 Sao Paulo, Brazil
[8] Univ Fed Sao Paulo, Paulista Med Sch, Dept Ophthalmol & Visual Sci, BR-04021001 Sao Paulo, Brazil
[9] Jichi Med Univ, Dept Ophthalmol, Shimotsuke, Tochigi 3290431, Japan
[10] Univ Tennessee, Hlth Sci Ctr, Dept Ophthalmol, Memphis, TN 38163 USA
[11] Univ Tennessee, Hlth Sci Ctr, Dept Genet Genom & Informat, Memphis, TN 38163 USA
关键词
convolutional neural networks; keratoconus; feature fusion; transfer learning; deep learning; machine learning; CORNEAL TOPOGRAPHY; RAW DATA; CLASSIFICATION;
D O I
10.3390/diagnostics13101689
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97-100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with 213 eyes examined in Iraq and obtained AUCs of 0.91-0.92 and an accuracy range of 88-92%. The proposed model is a step toward improving the detection of clinical and subclinical forms of KCN.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Learning deep feature fusion for traffic light detection
    Hassan, Ehtesham
    Khalil, Yasser
    Ahmad, Imtiaz
    JOURNAL OF ENGINEERING RESEARCH, 2024, 12 (01): : 100 - 106
  • [2] Learning deep feature fusion for traffic light detection
    Hassan, Ehtesham
    Khalil, Yasser
    Ahmad, Imtiaz
    JOURNAL OF ENGINEERING RESEARCH, 2023, 11 (03): : 94 - 99
  • [3] Reinforced Neighbour Feature Fusion Object Detection with Deep Learning
    Wang, Ningwei
    Li, Yaze
    Liu, Hongzhe
    SYMMETRY-BASEL, 2021, 13 (09):
  • [4] Network intrusion detection using feature fusion with deep learning
    Abiodun Ayantayo
    Amrit Kaur
    Anit Kour
    Xavier Schmoor
    Fayyaz Shah
    Ian Vickers
    Paul Kearney
    Mohammed M. Abdelsamea
    Journal of Big Data, 10
  • [5] Network intrusion detection using feature fusion with deep learning
    Ayantayo, Abiodun
    Kaur, Amrit
    Kour, Anit
    Schmoor, Xavier
    Shah, Fayyaz
    Vickers, Ian
    Kearney, Paul
    Abdelsamea, Mohammed M.
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [6] Small object detection using deep feature learning and feature fusion network
    Tong, Kang
    Wu, Yiquan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [7] Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
    Ali H. Al-Timemy
    Nebras H. Ghaeb
    Zahraa M. Mosa
    Javier Escudero
    Cognitive Computation, 2022, 14 : 1627 - 1642
  • [8] Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
    Al-Timemy, Ali H.
    Ghaeb, Nebras H.
    Mosa, Zahraa M.
    Escudero, Javier
    COGNITIVE COMPUTATION, 2022, 14 (05) : 1627 - 1642
  • [9] Automatic detection of keratoconus on Pentacam images using feature selection based on deep learning
    Firat, Murat
    Cankaya, Cem
    Cinar, Ahmet
    Tuncer, Taner
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (05) : 1548 - 1560
  • [10] Deep Multi-Scale Feature Fusion Target Detection Algorithm Based on Deep Learning
    Liu Xin
    Chen Siyi
    Chen Xiaolong
    Du Xinhao
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (12)