Identification of volatile organic compounds and their sources driving ozone and secondary organic aerosol formation in NE Spain

被引:3
|
作者
Veld, Marten in 't [1 ,2 ]
Seco, Roger [1 ]
Reche, Cristina [1 ]
Perez, Noemi [1 ]
Alastuey, Andres [1 ]
Portillo-Estrada, Miguel [3 ]
Janssens, Ivan A. [3 ]
Penuelas, Josep [4 ,5 ]
Fernandez-Martinez, Marcos [3 ,4 ,5 ]
Marchand, Nicolas [6 ]
Temime-Roussel, Brice [6 ]
Querol, Xavier [1 ]
Yanez-Serrano, Ana Maria [1 ,4 ,5 ]
机构
[1] IDAEA CSIC, Inst Environm Assessment & Water Res, Barcelona 08034, Spain
[2] Univ Politecn Cataluna, Dept Civil & Environm Engn, Barcelona 08034, Spain
[3] Univ Antwerp, Dept Biol, PLECO Plants & Ecosyst, Antwerp, Belgium
[4] CREAF, E-08193 Catalonia, Cerdanyola Del, Spain
[5] UAB, Global Ecol Unit, CSIC, CREAF, Catalonia, Cerdanyola Del, Spain
[6] Aix Marseille Univ, CNRS, LCE, Marseille, France
关键词
VOC; PTR-MS; Source apportionment; PMF; OFP; SOAP; WESTERN MEDITERRANEAN BASIN; MIXING RATIOS; SOURCE APPORTIONMENT; PARTICULATE MATTER; CARBONYL-COMPOUNDS; BIOGENIC ISOPRENE; METROPOLITAN-AREA; URBAN ATMOSPHERE; COMPOUNDS VOCS; PTR-MS;
D O I
10.1016/j.scitotenv.2023.167159
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Volatile organic compounds (VOCs) play a crucial role in the formation of ozone (O3) and secondary organic aerosol (SOA). We conducted measurements of VOC ambient mixing ratios during both summer and winter at two stations: a Barcelona urban background station (BCN) and the Montseny rural background station (MSY). Subsequently, we employed positive matrix factorization (PMF) to analyze the VOC mixing ratios and identify their sources. Our analysis revealed five common sources: anthropogenic I (traffic & industries); anthropogenic II (traffic & biomass burning); isoprene oxidation; monoterpenes; long-lifetime VOCs. To assess the impact of these VOCs on the formation of secondary pollutants, we calculated the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAP) associated with each VOC. In conclusion, our study provides insights into the sources of VOCs and their contributions to the formation of ozone and SOA in NE Spain. The OFP was primarily influenced by anthropogenic aromatic compounds from the traffic & industries source at BCN (38-49 %) and during winter at MSY (34 %). In contrast, the summer OFP at MSY was primarily driven by biogenic contributions from monoterpenes and isoprene oxidation products (45 %). Acetaldehyde (10-35 %) and methanol (13-14 %) also made significant OFP contributions at both stations. Anthropogenic aromatic com-pounds originating from traffic, industries, and biomass burning played a dominant role (88-93 %) in SOA formation at both stations during both seasons. The only exception was during the summer at MSY, where monoterpenes became the primary driver of SOA formation (41 %). These findings emphasize the importance of considering both anthropogenic and biogenic VOCs in air quality management strategies.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Chamber investigation of the formation and transformation of secondary organic aerosol in mixtures of biogenic and anthropogenic volatile organic compounds
    Voliotis, Aristeidis
    Du, Mao
    Wang, Yu
    Shao, Yunqi
    Alfarra, M. Rami
    Bannan, Thomas J.
    Hu, Dawei
    Pereira, Kelly L.
    Hamilton, Jaqueline F.
    Hallquist, Mattias
    Mentel, Thomas F.
    McFiggans, Gordon
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (21) : 14147 - 14175
  • [22] Source characterization of volatile organic compounds in urban Beijing and its links to secondary organic aerosol formation
    Liu, Quan
    Sheng, Jiujiang
    Wu, Yangzhou
    Ma, Zhiqiang
    Sun, Junying
    Tian, Ping
    Zhao, Delong
    Li, Xia
    Hu, Kang
    Li, Siyuan
    Shen, Xiaojing
    Zhang, Yangmei
    He, Hui
    Huang, Mengyu
    Ding, Deping
    Liu, Dantong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 860
  • [23] Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation
    Suthawaree, Jeeranut
    Tajima, Yosuke
    Khunchornyakong, Alisa
    Kato, Shungo
    Sharp, Alice
    Kajii, Yoshizumi
    ATMOSPHERIC RESEARCH, 2012, 104 : 245 - 254
  • [24] Contributions of individual biogenic volatile organic compounds to organic nitrate and secondary organic aerosol formation above a mixed forest
    Pratt, Kerri A.
    Mielke, Levi H.
    Shepson, Paul B.
    Bryan, Alexander M.
    Steiner, Allison L.
    Ortega, John
    Helmig, Detlev
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [25] Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: Impacts on tropospheric ozone and secondary organic aerosol
    Fu, Yu
    Liao, Hong
    ATMOSPHERIC ENVIRONMENT, 2012, 59 : 170 - 185
  • [26] Volatile Organic Compounds in the North China Plain: Characteristics, Sources, and Effects on Ozone Formation
    Yang, Xue
    Gao, Luhong
    Zhao, Shiyang
    Pan, Guang
    Fan, Guolan
    Xia, Zhiyong
    Sun, Xiaoyan
    Xu, Hongyu
    Chen, Yanjun
    Jin, Xiaolong
    ATMOSPHERE, 2023, 14 (02)
  • [27] Characteristics, Sources, and Contributions to Ozone Formation of Ambient Volatile Organic Compounds in Huanggang, China
    Lian S.-Z.
    Deng M.-J.
    Chen N.
    Wang Y.-Y.
    Tao H.-T.
    Cheng H.-R.
    Huanjing Kexue/Environmental Science, 2023, 44 (10): : 5410 - 5417
  • [28] Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing
    Duan, Jingchun
    Tan, Jihua
    Yang, Liu
    Wu, Shan
    Hao, Jimin
    ATMOSPHERIC RESEARCH, 2008, 88 (01) : 25 - 35
  • [29] Emission of volatile organic compounds from landfill working surfaces: Formation potential of ozone and secondary organic aerosols
    Zhao, Silan
    Li, Rong
    Wang, Shengwei
    Liu, Yanqing
    Lu, Wenjing
    Zhao, Yan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 886
  • [30] Enhanced secondary organic aerosol formation from the photo-oxidation of mixed anthropogenic volatile organic compounds
    Li, Junling
    Li, Hong
    Li, Kun
    Chen, Yan
    Zhang, Hao
    Zhang, Xin
    Wu, Zhenhai
    Liu, Yongchun
    Wang, Xuezhong
    Wang, Weigang
    Ge, Maofa
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (10) : 7773 - 7789