In-depth Recommendation Model Based on Self-Attention Factorization

被引:3
|
作者
Ma, Hongshuang [1 ]
Liu, Qicheng [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-attention network; deep learning; recommendation model; review text;
D O I
10.3837/tiis.2023.03.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rating prediction is an important issue in recommender systems, and its accuracy affects the experience of the user and the revenue of the company. Traditional recommender systems use Factorization Machines for rating predictions and each feature is selected with the same weight. Thus, there are problems with inaccurate ratings and limited data representation. This study proposes a deep recommendation model based on self-attention Factorization (SAFMR) to solve these problems. This model uses Convolutional Neural Networks to extract features from user and item reviews. The obtained features are fed into self-attention mechanism Factorization Machines, where the self-attention network automatically learns the dependencies of the features and distinguishes the weights of the different features, thereby reducing the prediction error. The model was experimentally evaluated using six classes of dataset. We compared MSE, NDCG and time for several real datasets. The experiment demonstrated that the SAFMR model achieved excellent rating prediction results and recommendation correlations, thereby verifying the effectiveness of the model.
引用
收藏
页码:721 / 739
页数:19
相关论文
共 50 条
  • [41] Ordinal Depth Classification Using Region-based Self-attention
    Phan, Minh Hieu
    Phung, Son Lam
    Bouzerdoum, Abdesselam
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3620 - 3627
  • [42] Weight Adjustment Framework for Self-Attention Sequential Recommendation
    Su, Zheng-Ang
    Zhang, Juan
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [43] Time Interval Aware Self-Attention for Sequential Recommendation
    Li, Jiacheng
    Wang, Yujie
    McAuley, Julian
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 322 - 330
  • [44] CGSNet: Contrastive Graph Self-Attention Network for Session-based Recommendation
    Wang, Fuyun
    Lu, Xuequan
    Lyu, Lei
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [45] Self-Attention Network for Session-Based Recommendation With Streaming Data Input
    Sun, Shiming
    Tang, Yuanhe
    Dai, Zemei
    Zhou, Fu
    IEEE ACCESS, 2019, 7 : 110499 - 110509
  • [46] A Self-attention Network Based Node Embedding Model
    Nguyen, Dai Quoc
    Nguyen, Tu Dinh
    Phung, Dinh
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 364 - 377
  • [47] Indoor Depth Completion with Boundary Consistency and Self-Attention
    Huang, Yu-Kai
    Wu, Tsung-Han
    Liu, Yueh-Cheng
    Hsu, Winston H.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1070 - 1078
  • [48] Context-embedded hypergraph attention network and self-attention for session recommendation
    Zhang, Zhigao
    Zhang, Hongmei
    Zhang, Zhifeng
    Wang, Bin
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [49] SanMove: next location recommendation via self-attention network
    Wang, Bin
    Li, Huifeng
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    Yang, Tao
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 57 (03) : 330 - 343
  • [50] CSAN: Contextual Self-Attention Network for User Sequential Recommendation
    Huang, Xiaowen
    Qian, Shengsheng
    Fang, Quan
    Sang, Jitao
    Xu, Changsheng
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 447 - 455