In-depth Recommendation Model Based on Self-Attention Factorization

被引:3
|
作者
Ma, Hongshuang [1 ]
Liu, Qicheng [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-attention network; deep learning; recommendation model; review text;
D O I
10.3837/tiis.2023.03.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rating prediction is an important issue in recommender systems, and its accuracy affects the experience of the user and the revenue of the company. Traditional recommender systems use Factorization Machines for rating predictions and each feature is selected with the same weight. Thus, there are problems with inaccurate ratings and limited data representation. This study proposes a deep recommendation model based on self-attention Factorization (SAFMR) to solve these problems. This model uses Convolutional Neural Networks to extract features from user and item reviews. The obtained features are fed into self-attention mechanism Factorization Machines, where the self-attention network automatically learns the dependencies of the features and distinguishes the weights of the different features, thereby reducing the prediction error. The model was experimentally evaluated using six classes of dataset. We compared MSE, NDCG and time for several real datasets. The experiment demonstrated that the SAFMR model achieved excellent rating prediction results and recommendation correlations, thereby verifying the effectiveness of the model.
引用
收藏
页码:721 / 739
页数:19
相关论文
共 50 条
  • [1] Session-Based Recommendation with Self-Attention
    Anh, Pharr Hoang
    Bach, Ngo Xuan
    Phuong, Tu Minh
    SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 1 - 8
  • [2] Individualized tourism recommendation based on self-attention
    Liu, Guangjie
    Ma, Xin
    Zhu, Jinlong
    Zhang, Yu
    Yang, Danyang
    Wang, Jianfeng
    Wang, Yi
    PLOS ONE, 2022, 17 (08):
  • [3] Recurrent Factorization Machine with Self-Attention for Time-aware Service Recommendation
    Zhou, Jiao
    Guo, Xing
    Yin, Chunhui
    2020 6TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM 2020), 2020, : 189 - 197
  • [4] Self-attention Based Collaborative Neural Network for Recommendation
    Ma, Shengchao
    Zhu, Jinghua
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2019, 2019, 11604 : 235 - 246
  • [5] Exception Handling Recommendation Based on Self-Attention Network
    Lin, Kai
    Tao, Chuanqi
    Huang, Zhiqiu
    2021 IEEE INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORKSHOPS (ISSREW 2021), 2021, : 282 - 283
  • [6] HARSAM: A Hybrid Model for Recommendation Supported by Self-Attention Mechanism
    Peng, Dunlu
    Yuan, Weiwei
    Liu, Cong
    IEEE ACCESS, 2019, 7 : 12620 - 12629
  • [7] Neural attention model for recommendation based on factorization machines
    Wen, Peng
    Yuan, Weihua
    Qin, Qianqian
    Sang, Sheng
    Zhang, Zhijun
    APPLIED INTELLIGENCE, 2021, 51 (04) : 1829 - 1844
  • [8] Self-Attention Based Sequential Recommendation With Graph Convolutional Networks
    Seng, Dewen
    Wang, Jingchang
    Zhang, Xuefeng
    IEEE ACCESS, 2024, 12 : 32780 - 32787
  • [9] Collaborative Self-Attention Network for Session-based Recommendation
    Luo, Anjing
    Zhao, Pengpeng
    Liu, Yanchi
    Zhuang, Fuzhen
    Wang, Deqing
    Xu, Jiajie
    Fang, Junhua
    Sheng, Victor S.
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2591 - 2597
  • [10] An improved sequential recommendation model based on spatial self-attention mechanism and meta learning
    Ni, Jianjun
    Shen, Tong
    Tang, Guangyi
    Shi, Pengfei
    Yang, Simon X.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (21) : 60003 - 60025