Developing Single-Ion Conductive Polymer Electrolytes for High-Energy-Density Solid State Batteries

被引:39
|
作者
Meng, Nan [1 ]
Ye, Yuning [1 ]
Yang, Zhaoxia [1 ]
Li, Hao [1 ]
Lian, Fang [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
ionic conductivity; polymer electrolytes; single-ion conductors; solid state batteries; transference number; BLOCK-COPOLYMER ELECTROLYTES; BAB TRIBLOCK COPOLYMERS; TARTARIC ACID BORATE; LITHIUM-ION; POLY(ETHYLENE OXIDE); ELECTROCHEMICAL STABILITY; POLY(ARYLENE ETHER); ELECTRICAL RESPONSE; METAL BATTERIES; NETWORK;
D O I
10.1002/adfm.202305072
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-ion conductive polymer electrolytes (SICPEs) with a cationic transference number (t(Li+)) close to unity exhibit specific advantages in solid-state batteries (SSBs), including mitigating the ion concentration gradient and derived problems, suppressing the growth of lithium dendrites, and improving the utilization of cathode materials and the rate performance of SSBs. However, the application of SICPEs remains major challenges, i.e., the ionic conductivity is inferior at room temperature. Therefore, the recent accomplishments in improving the ambient ionic conductivity to be compatible SICPEs with a high transference number are discussed in this review. In particular, some strategies of delocalizing charges in polyanions, designing a highly conductive polymer matrix, and utilizing synergistic effects in SICPEs are focused to shed light on the further development of solid polymer electrolytes for SSBs. Finally, multifunctional species of SICPEs are discussed in view of the mechanical contact and/or charge transfer problems at the solid-solid interface in SSBs.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Manufacturing High-Energy-Density Sulfidic Solid-State Batteries
    Li, Gang
    Wang, Shuo
    Fu, Jipeng
    Liu, Yuan
    Chen, Zehua
    BATTERIES-BASEL, 2023, 9 (07):
  • [22] A single-ion conducting hyperbranched polymer as a high performance solid-state electrolyte for lithium ion batteries
    Zhang, Meng
    Yu, Songrui
    Mai, Yiyong
    Zhang, Shaodong
    Zhou, Yongfeng
    CHEMICAL COMMUNICATIONS, 2019, 55 (47) : 6715 - 6718
  • [23] Nitrile-functionalized Poly(siloxane) as Electrolytes for High-Energy-Density Solid-State Li Batteries
    Okur, Faruk
    Sheima, Yauhen
    Zimmerli, Can
    Zhang, Huanyu
    Helbling, Patrick
    Fah, Ashling
    Mihail, Iacob
    Tschudin, Jacqueline
    Opris, Dorina M.
    Kovalenko, Maksym V.
    Kravchyk, Kostiantyn V.
    CHEMSUSCHEM, 2024, 17 (03)
  • [24] Single-Ion Conducting Polymer Electrolytes for Solid-State Lithium-Metal Batteries: Design, Performance, and Challenges
    Zhu, Jiadeng
    Zhang, Zhen
    Zhao, Sheng
    Westover, Andrew S.
    Belharouak, Ilias
    Cao, Peng-Fei
    ADVANCED ENERGY MATERIALS, 2021, 11 (14)
  • [25] Single-Ion Conducting Polymer Nanoparticles as Functional Fillers for Solid Electrolytes in Lithium Metal Batteries
    Porcarelli, Luca
    Sutton, Preston
    Bocharova, Vera
    Aguirresarobe, Robert H.
    Zhu, Haijin
    Goujon, Nicolas
    Leiza, Jose R.
    Sokolov, Alexei
    Forsyth, Maria
    Mecerreyes, David
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (45) : 54354 - 54362
  • [26] Single-ion conducting polymer electrolytes toward a stretchable solid-state battery
    Cao, Peng-Fei
    Li, Bingrui
    Yang, Guang
    Zhao, Sheng
    Liu, Tianyi
    Lin, Feng
    Du, Zhijia
    Wood, David
    Sokolov, Alexei
    Nanda, Jagjit
    Saito, Tomonori
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [27] Tetraarylborate polymer networks as single-ion conducting solid electrolytes
    Van Humbeck, Jeffrey F.
    Aubrey, Michael L.
    Alsbaiee, Alaaeddin
    Ameloot, Rob
    Coates, Geoffrey W.
    Dichtel, William R.
    Long, Jeffrey R.
    CHEMICAL SCIENCE, 2015, 6 (10) : 5499 - 5505
  • [28] Eutectic electrolytes for high-energy-density redox flow batteries
    Yu, Guihua
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [29] Microstructure Design of Electrolytes for High-Energy-Density Aqueous Batteries
    Zhang, Canfu
    Chen, Binbin
    Chen, Qinlong
    Tian, Changhe
    Zhou, Mengqi
    Zhao, Xuesong
    Li, Zirui
    Fan, Liwu
    Kong, Xueqian
    Pan, Huilin
    ACS ENERGY LETTERS, 2024, 9 (09): : 4691 - 4698
  • [30] Eutectic Electrolytes for High-Energy-Density Redox Flow Batteries
    Zhang, Changkun
    Zhang, Leyuan
    Ding, Yu
    Guo, Xuelin
    Yu, Guihua
    ACS ENERGY LETTERS, 2018, 3 (12): : 2875 - 2883