A physics-guided machine learning framework for real-time dynamic wake prediction of wind turbines

被引:12
|
作者
Li, Baoliang [1 ]
Ge, Mingwei [1 ]
Li, Xintao [1 ]
Liu, Yongqian [1 ]
机构
[1] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
关键词
MODEL; FARMS; FLOW;
D O I
10.1063/5.0194764
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Efficient and accurate prediction of the wind turbine dynamic wake is crucial for active wake control and load assessment in wind farms. This paper proposes a real-time dynamic wake prediction model for wind turbines based on a physics-guided neural network. The model can predict the instantaneous dynamic wake field under various operating conditions using only the inflow wind speed as input. The model utilizes Taylor's frozen-flow hypothesis and a steady-state wake model to convert instantaneous inflow wind speed and turbine parameters into neural network input features. A deep convolutional neural network then maps these features to desired wake field snapshots, enabling dynamic wake predictions for wind turbines. To train the model, we generated approximately 255 000 instantaneous flow field snapshots of single-turbine wakes using the large eddy simulation, covering different thrust coefficients and yaw angles. The model was trained using the supervised learning method and verified on the test set. The results indicate that the model can effectively predict the dynamic wake characteristics, including the dynamic wake meandering and the wake deflection of the yawed turbines. The model can also assess both the instantaneous wake velocity and the instantaneous wake center of a wind turbine. At a thrust coefficient of 0.75, the root mean square error for the predicted instantaneous wake velocity is around 6.53%, while the Pearson correlation coefficient for the predicted instantaneous wake center can reach 0.624. Furthermore, once the model is trained, its prediction accuracy does not decrease with the increase in the time span.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A Physics-Guided Machine Learning Model for Predicting Viscoelasticity of Solids at Large Deformation
    Qin, Bao
    Zhong, Zheng
    POLYMERS, 2024, 16 (22)
  • [32] A physics-guided reinforcement learning framework for an autonomous manufacturing system with expensive data
    Alam, Md Ferdous
    Shtein, Max
    Barton, Kira
    Hoelzle, David J.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 484 - 490
  • [33] Physics-guided machine learning from simulated data with different physical parameters
    Chen, Shengyu
    Kalanat, Nasrin
    Xie, Yiqun
    Li, Sheng
    Zwart, Jacob A.
    Sadler, Jeffrey M.
    Appling, Alison P.
    Oliver, Samantha K.
    Read, Jordan S.
    Jia, Xiaowei
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (08) : 3223 - 3250
  • [34] An inversion problem for optical spectrum data via physics-guided machine learning
    Park, Hwiwoo
    Park, Jun H.
    Hwang, Jungseek
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Accelerating hydrodynamic simulations of urban drainage systems with physics-guided machine learning
    Palmitessa, Rocco
    Grum, Morten
    Engsig-Karup, Allan Peter
    Lowe, Roland
    WATER RESEARCH, 2022, 223
  • [36] Structural dynamics simulation using a novel physics-guided machine learning method
    Yu, Yang
    Yao, Houpu
    Liu, Yongming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 96
  • [37] Development and assessment of a reactor system prognosis model with physics-guided machine learning
    Gurgen, Anil
    Dinh, Nam T.
    NUCLEAR ENGINEERING AND DESIGN, 2022, 398
  • [38] Physics-guided machine learning for improved accuracy of the National Solar Radiation Database
    Buster, Grant
    Bannister, Mike
    Habte, Aron
    Hettinger, Dylan
    Maclaurin, Galen
    Rossol, Michael
    Sengupta, Manajit
    Xie, Yu
    SOLAR ENERGY, 2022, 232 : 483 - 492
  • [39] Physics-guided machine learning from simulated data with different physical parameters
    Shengyu Chen
    Nasrin Kalanat
    Yiqun Xie
    Sheng Li
    Jacob A. Zwart
    Jeffrey M. Sadler
    Alison P. Appling
    Samantha K. Oliver
    Jordan S. Read
    Xiaowei Jia
    Knowledge and Information Systems, 2023, 65 : 3223 - 3250
  • [40] Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs
    Qin, Zhen
    Jiang, Anyue
    Faulder, Dave
    Cladouhos, Trenton T.
    Jafarpour, Behnam
    GEOTHERMICS, 2024, 116