Idempotent uninorms on a bounded chain

被引:1
|
作者
Su, Yong [1 ]
Mesiarova-Zemankova, Andrea [2 ,3 ]
Mesiar, Radko [3 ,4 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Jiangsu, Peoples R China
[2] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
[3] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, CE IT4Innovat,30 Dubna 22, Ostrava 70103, Czech Republic
[4] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Radlinskeho 11, Bratislava 81005, Slovakia
基金
中国国家自然科学基金;
关键词
Bounded chain; Dedekind-MacNeille completion; Idempotent uninorm;
D O I
10.1016/j.fss.2023.108671
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ouyang et al. characterized idempotent uninorms on a complete chain in terms of decreasing unary functions with a symmetryrelated property. In this paper, we generalize the results of Ouyang et al. and show that each idempotent uninorm on a bounded chain can be extended to an idempotent uninorm on a complete chain isomorphic to its Dedekind-MacNeille completion such that the restriction of the latter idempotent uninorm to this bounded chain coincides with the previous uninorm, which, together with the results of Ouyang et al. [7], gives a characterization of idempotent uninorms on a bounded chain. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] ON THE DIRECT PRODUCT OF UNINORMS ON BOUNDED LATTICES
    Asici, Emel
    Mesiar, Radko
    KYBERNETIKA, 2021, 57 (06) : 989 - 1004
  • [32] On Properties of Internal Uninorms on Bounded Lattices
    Cayli, Gul Deniz
    NEW TRENDS IN AGGREGATION THEORY, 2019, 981 : 115 - 128
  • [33] New constructions of uninorms on bounded lattices
    Dan, Yexing
    Hu, Bao Qing
    Qiao, Junsheng
    International Journal of Approximate Reasoning, 2019, 110 : 185 - 209
  • [34] A new structure for uninorms on bounded lattices
    Dan, Yexing
    Hu, Bao Qing
    FUZZY SETS AND SYSTEMS, 2020, 386 : 77 - 94
  • [35] New structures for uninorms on bounded lattices
    Xiu, Zhen-Yu
    Jiang, Yu-Xiu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (02) : 2019 - 2030
  • [36] Decomposition of idempotent pseudo-uninorms via ordinal sum
    Mesiarova-Zemankova, Andrea
    INFORMATION SCIENCES, 2023, 648
  • [37] A note on decomposition of idempotent uninorms into an ordinal sum of singleton semigroups
    Mesiarova-Zemankova, Andrea
    FUZZY SETS AND SYSTEMS, 2016, 299 : 140 - 145
  • [38] On the representation of internal uninorms on a bounded lattice
    Ouyang, Yao
    Zhang, Hua-Peng
    Wang, Zhudeng
    De Baets, Bernard
    FUZZY SETS AND SYSTEMS, 2024, 487
  • [39] Residual implications and co-implications from idempotent uninorms
    Ruiz, D
    Torrens, J
    KYBERNETIKA, 2004, 40 (01) : 21 - 38
  • [40] An alternative construction of uninorms on bounded lattices
    Cayli, Guel Deniz
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2023, 52 (05) : 574 - 596