Multiplicity Results of Solutions to the Double Phase Problems of Schrödinger-Kirchhoff Type with Concave-Convex Nonlinearities

被引:1
|
作者
Kim, Yun-Ho [1 ]
Jeong, Taek-Jun [1 ]
机构
[1] Sangmyung Univ, Dept Math Educ, Seoul 03016, South Korea
关键词
Kirchhoff function; double phase problems; Musielak-Orlicz-Sobolev spaces; multiple solutions; variational methods; KIRCHHOFF TYPE PROBLEM; SCHRODINGER-EQUATIONS; EXISTENCE; AMBROSETTI; FUNCTIONALS;
D O I
10.3390/math12010060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper is devoted to establishing several existence results for infinitely many solutions to Schrodinger-Kirchhoff-type double phase problems with concave-convex nonlinearities. The first aim is to demonstrate the existence of a sequence of infinitely many large-energy solutions by applying the fountain theorem as the main tool. The second aim is to obtain that our problem admits a sequence of infinitely many small-energy solutions. To obtain these results, we utilize the dual fountain theorem. In addition, we prove the existence of a sequence of infinitely many weak solutions converging to 0 in L infinity-space. To derive this result, we exploit the dual fountain theorem and the modified functional method.
引用
收藏
页数:35
相关论文
共 50 条