Double-level View-correlation Multi-view Subspace Clustering

被引:4
|
作者
Lan, Shoujie [1 ]
Zheng, Qinghai [1 ]
Yu, Yuanlong [1 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Subspace clustering; View-correlation; REPRESENTATION; MATRIX;
D O I
10.1016/j.knosys.2023.111271
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, significant progress has been made in Multi-view Subspace Clustering (MSC). Most existing MSC methods attempt to explore and exploit the view correlations of multi-view data to boost the clustering performance. They achieve the subspace matrices of different views from the original feature space directly. However, the diversity view-correlation and consistency-view correlation of multi-view data are two antago-nistic properties, which are improper and challenging to be captured in such a straightforward process. To simultaneously and properly investigate the two antagonistic properties of multi-view data, a novel Double -level View-correlation Multi-view Subspace Clustering method, named DV-MSC, is introduced in this paper. To be specific, DV-MSC adopts a strategy that deals with the diversity view-correlation and consistency view -correlation in different levels: (1) low-level, which excavates the diversity view-correlation in the feature space, and (2) high-level, which explores the consistency view-correlation in subspace representations. The underlying assumption is that different views should be diverse in the feature space while having the same clustering results, in other words, the proposed method explores the Diversity in Low-level Feature Content (DLFC) and the Consistency in High-level Clustering Structure (CHCS). Experimental results show the promising and competitive clustering performance of DV-MSC, compared to several existing state-of-the-arts.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Latent shared representation for multi-view subspace clustering
    Huang, Baifu
    Yuan, Haoliang
    Lai, Loi Lei
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [42] Multi-view subspace clustering via partition fusion
    Lv, Juncheng
    Kang, Zhao
    Wang, Boyu
    Ji, Luping
    Xu, Zenglin
    INFORMATION SCIENCES, 2021, 560 (560) : 410 - 423
  • [43] Multi-View Subspace Clustering With Block Diagonal Representation
    Guo, Jipeng
    Yin, Wenbin
    Sun, Yanfeng
    Hu, Yongli
    IEEE ACCESS, 2019, 7 : 84829 - 84838
  • [44] Learning Smooth Representation for Multi-view Subspace Clustering
    Huang, Shudong
    Liu, Yixi
    Ren, Yazhou
    Tsang, Ivor W.
    Xu, Zenglin
    Lv, Jiancheng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3421 - 3429
  • [45] Multi-view subspace clustering based on adaptive search
    Dong, Anxue
    Wu, Zikai
    Zhang, Hongjuan
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [46] Diversity-induced Multi-view Subspace Clustering
    Cao, Xiaochun
    Zhang, Changqing
    Fu, Huazhu
    Liu, Si
    Zhang, Hua
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 586 - 594
  • [47] Tensorized Incomplete Multi-view Kernel Subspace Clustering
    Zhang, Guang-Yu
    Huang, Dong
    Wang, Chang-Dong
    NEURAL NETWORKS, 2024, 179
  • [48] Scalable Multi-view Subspace Clustering with Unified Anchors
    Sun, Mengjing
    Zhang, Pei
    Wang, Siwei
    Zhou, Sihang
    Tu, Wenxuan
    Liu, Xinwang
    Zhu, En
    Wang, Changjian
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3528 - 3536
  • [49] Joint representation learning for multi-view subspace clustering
    Zhang, Guang-Yu
    Zhou, Yu-Ren
    Wang, Chang-Dong
    Huang, Dong
    He, Xiao-Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 166
  • [50] Structured general and specific multi-view subspace clustering
    Zhu, Wencheng
    Lu, Jiwen
    Zhou, Jie
    PATTERN RECOGNITION, 2019, 93 : 392 - 403