Efficient Halftoning via Deep Reinforcement Learning

被引:2
|
作者
Jiang, Haitian [1 ]
Xiong, Dongliang [1 ]
Jiang, Xiaowen [1 ]
Ding, Li [2 ]
Chen, Liang [2 ]
Huang, Kai [1 ]
机构
[1] Zhejiang Univ, Inst VLSI Design, Hangzhou 310058, Peoples R China
[2] Apex Microelect Co Ltd, Zhuhai 519075, Peoples R China
关键词
Measurement; Convolutional neural networks; Training; Reinforcement learning; Deep learning; Visualization; Extensibility; Halftoning; dithering; deep learning; reinforcement learning; blue noise; ERROR-DIFFUSION; VISIBILITY;
D O I
10.1109/TIP.2023.3318937
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Halftoning aims to reproduce a continuous-tone image with pixels whose intensities are constrained to two discrete levels. This technique has been deployed on every printer, and the majority of them adopt fast methods (e.g., ordered dithering, error diffusion) that fail to render structural details, which determine halftone's quality. Other prior methods of pursuing visual pleasure by searching for the optimal halftone solution, on the contrary, suffer from their high computational cost. In this paper, we propose a fast and structure-aware halftoning method via a data-driven approach. Specifically, we formulate halftoning as a reinforcement learning problem, in which each binary pixel's value is regarded as an action chosen by a virtual agent with a shared fully convolutional neural network (CNN) policy. In the offline phase, an effective gradient estimator is utilized to train the agents in producing high-quality halftones in one action step. Then, halftones can be generated online by one fast CNN inference. Besides, we propose a novel anisotropy suppressing loss function, which brings the desirable blue-noise property. Finally, we find that optimizing SSIM could result in holes in flat areas, which can be avoided by weighting the metric with the contone's contrast map. Experiments show that our framework can effectively train a light-weight CNN, which is 15x faster than previous structure-aware methods, to generate blue-noise halftones with satisfactory visual quality. We also present a prototype of deep multitoning to demonstrate the extensibility of our method.
引用
收藏
页码:5494 / 5508
页数:15
相关论文
共 50 条
  • [31] EFFICIENT INDOOR LOCALIZATION VIA REINFORCEMENT LEARNING
    Milioris, Dimitris
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8350 - 8354
  • [32] Learning to Navigate in Human Environments via Deep Reinforcement Learning
    Gao, Xingyuan
    Sun, Shiying
    Zhao, Xiaoguang
    Tan, Min
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 418 - 429
  • [33] Learning to Code: Coded Caching via Deep Reinforcement Learning
    Naderializadeh, Navid
    Asghari, Seyed Mohammad
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1774 - 1778
  • [34] Learning to Extract Coherent Summary via Deep Reinforcement Learning
    Wu, Yuxiang
    Hu, Baotian
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 5602 - 5609
  • [35] Efficient Deep Reinforcement Learning for Optimal Path Planning
    Ren, Jing
    Huang, Xishi
    Huang, Raymond N.
    ELECTRONICS, 2022, 11 (21)
  • [36] Deep reinforcement learning for efficient measurement of quantum devices
    Nguyen, V.
    Orbell, S. B.
    Lennon, D. T.
    Moon, H.
    Vigneau, F.
    Camenzind, L. C.
    Yu, L.
    Zumbuhl, D. M.
    Briggs, G. A. D.
    Osborne, M. A.
    Sejdinovic, D.
    Ares, N.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [37] Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning
    Ko, Byungchan
    Ok, Jungseul
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [38] Efficient Deep Web Crawling Using Reinforcement Learning
    Jiang, Lu
    Wu, Zhaohui
    Feng, Qian
    Liu, Jun
    Zheng, Qinghua
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PROCEEDINGS, 2010, 6118 : 428 - +
  • [39] An efficient intrusive deep reinforcement learning framework for OpenFOAM
    Salehi, Saeed
    MECCANICA, 2024,
  • [40] Efficient Online Hyperparameter Adaptation for Deep Reinforcement Learning
    Zhou, Yinda
    Liu, Weiming
    Li, Bin
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2019, 2019, 11454 : 141 - 155