Unsupervised and supervised learning of interacting topological phases from single-particle correlation functions

被引:16
|
作者
Tibaldi, Simone [1 ,2 ]
Magnifico, Giuseppe [3 ,4 ,5 ]
Vodola, Davide [1 ,2 ]
Ercolessi, Elisa [1 ,2 ]
机构
[1] Univ Bologna, Dipartimento Fis & Astron Augusto Righi, I-40127 Bologna, Italy
[2] INFN, Sez Bologna, I-40127 Bologna, Italy
[3] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy
[4] Univ Padua, Padua Quantum Technol Res Ctr, Padua, Italy
[5] Ist Nazl Fis Nucleare INFN, Sez Padova, I-35131 Padua, Italy
来源
SCIPOST PHYSICS | 2023年 / 14卷 / 01期
基金
欧盟地平线“2020”;
关键词
D O I
10.21468/SciPostPhys.14.1.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recent advances in machine learning algorithms have boosted the application of these techniques to the field of condensed matter physics, in order e.g. to classify the phases of matter at equilibrium or to predict the real-time dynamics of a large class of physical models. Typically in these works, a machine learning algorithm is trained and tested on data coming from the same physical model. Here we demonstrate that unsupervised and supervised machine learning techniques are able to predict phases of a non-exactly solvable model when trained on data of a solvable model. In partic-ular, we employ a training set made by single-particle correlation functions of a non -interacting quantum wire and by using principal component analysis, k-means cluster-ing, t-distributed stochastic neighbor embedding and convolutional neural networks we reconstruct the phase diagram of an interacting superconductor. We show that both the principal component analysis and the convolutional neural networks trained on the data of the non-interacting model can identify the topological phases of the interacting model. Our findings indicate that non-trivial phases of matter emerging from the presence of in-teractions can be identified by means of unsupervised and supervised techniques applied to data of non-interacting systems.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] SINGLE-PARTICLE WAVE FUNCTIONS OF CALCIUM ISOTOPES
    SWIFT, A
    ELTON, LRB
    PHYSICAL REVIEW LETTERS, 1966, 17 (09) : 484 - &
  • [22] SINGLE-PARTICLE ASPECTS IN A COLLECTIVE FORMALISM FOR AN INTERACTING BOSON SYSTEM
    YAMASAKI, S
    KEBUKAWA, T
    SUNAKAWA, S
    PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (02): : 415 - 434
  • [23] On the distribution of interacting fermions over single-particle quantum states
    Mikhailov, S. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (10): : 1729 - 1736
  • [24] Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging
    Zhuang, Yulong
    Awel, Salah
    Barty, Anton
    Bean, Richard
    Bielecki, Johan
    Bergemann, Martin
    Daurer, Benedikt J.
    Ekeberg, Tomas
    Estillore, Armando D.
    Fangohr, Hans
    Giewekemeyer, Klaus
    Hunter, Mark S.
    Karnevskiy, Mikhail
    Kirian, Richard A.
    Kirkwood, Henry
    Kim, Yoonhee
    Koliyadu, Jayanath
    Lange, Holger
    Letrun, Romain
    Luebke, Jannik
    Mall, Abhishek
    Michelat, Thomas
    Morgan, Andrew J.
    Roth, Nils
    Samanta, Amit K.
    Sato, Tokushi
    Shen, Zhou
    Sikorski, Marcin
    Schulz, Florian
    Spence, John C. H.
    Vagovic, Patrik
    Wollweber, Tamme
    Worbs, Lena
    Xavier, P. Lourdu
    Yefanov, Oleksandr
    Maia, Filipe R. N. C.
    Horke, Daniel A.
    Kuepper, Jochen
    Loh, N. Duane
    Mancuso, Adrian P.
    Chapman, Henry N.
    Ayyer, Kartik
    IUCRJ, 2022, 9 : 204 - 214
  • [25] Hierarchy of correlations: Application to Green's functions and interacting topological phases
    Gomez-Leon, Alvaro
    PHYSICAL REVIEW B, 2016, 94 (03)
  • [26] TRANSLATIONAL AND ROTATIONAL DIFFUSION IN LIQUIDS .1. TRANSLATIONAL SINGLE-PARTICLE CORRELATION-FUNCTIONS
    CHANDLER, D
    JOURNAL OF CHEMICAL PHYSICS, 1974, 60 (09): : 3500 - 3507
  • [27] TRANSLATIONAL AND ROTATIONAL DIFFUSION IN LIQUIDS .2. ORIENTATIONAL SINGLE-PARTICLE CORRELATION-FUNCTIONS
    CHANDLER, D
    JOURNAL OF CHEMICAL PHYSICS, 1974, 60 (09): : 3508 - 3512
  • [28] Unsupervised learning of interacting topological and symmetry-breaking phase transitions
    Kuo, En-Jui
    Dehghani, Hossein
    PHYSICAL REVIEW B, 2022, 105 (23)
  • [29] Supervised and unsupervised machine learning of structural phases of polymers adsorbed to nanowires
    Parker, Quinn
    Perera, Dilina
    Li, Ying Wai
    Vogel, Thomas
    PHYSICAL REVIEW E, 2022, 105 (03)
  • [30] Unsupervised particle sorting for high-resolution single-particle cryo-EM
    Zhou, Ye
    Moscovich, Amit
    Bendory, Tamir
    Bartesaghi, Alberto
    INVERSE PROBLEMS, 2020, 36 (04)