MOTOR-IMAGERY EEG SIGNAL CLASSIFICATION USING OPTIMIZED SUPPORT VECTOR MACHINE BY DIFFERENTIAL EVOLUTION ALGORITHM

被引:0
|
作者
Fard, L. A. [1 ,3 ]
Jaseb, K. [2 ]
Safi, S. m mehdi [1 ]
机构
[1] Islamic Azad Univ, Dept Biomed Engn, Dezful Branch, Dezful, Iran
[2] Ahvaz Jundishapur Univ Med Sci, Hlth Res Inst, Thalassemia & Hemoglobinopathy Res Ctr, Ahvaz, Iran
[3] Kourosh St, Ahvaz 6164794519, Iran
来源
NEW ARMENIAN MEDICAL JOURNAL | 2023年 / 17卷 / 02期
关键词
Brain-Computer Interfaces; Electroencephalogram; Machine Learning; Support Vector Machine; Motor Imagery;
D O I
10.56936/18290825-2023.17.2-78
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Motor-Imagery (MI) is a mental or cognitive stimulation without actual sensory input that enables the mind to represent perceptual information. This study aims to use the optimized support vector machine (OSVM) by differential evolution algorithm for motor-Imagery EEG signal classification. Methods: A total of three filters were applied to each signal during the preprocessing phase. The bandstop filter was used to remove urban noise and signal recorders, the median filter to remove random sudden peaks in the signal, and finally, the signal was normalized using the mapminmax filter. The most valuable features were extracted including mean signal intensity, minimum signal value, signal peak value, signal median, signal standard deviation, energy, corticoids, entropy, and signal skewness. Results: The accuracy of the SVM for linear, Gaussian, polynomial, and radial base kernels was 67.3%, 55.1%, 63.6%, and 55.1%, respectively, which was optimized after the classification model by differential evolution algorithm; however, the accuracy for OSVM was increased to 99.6%. Conclusion: Examination of the brain signal appearance for uniform motor-Imagery of both hands showed a significant difference between the signal of motor-Imagery mode with OSVM algorithm (99.6% accuracy), which gave promising results for classification motor imagery EEG signal.
引用
收藏
页码:78 / 86
页数:9
相关论文
共 50 条
  • [21] Motor Imagery EEG Signal Processing and Classification using Machine Learning Approach
    Sreeja, S. R.
    Rabha, Joytirmoy
    Nagarjuna, K. Y.
    Samanta, Debasis
    Mitra, Pabitra
    Sarma, Monalisa
    2017 INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2017, : 61 - 66
  • [22] EEG motor/imagery signal classification comparative using machine learning algorithms
    Guadalupe Lazcano-Herrera, Alicia
    Fuentes-Aguilar, Rita Q.
    Alfaro-Ponce, Mariel
    2021 18TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2021), 2021,
  • [23] An Improved Performance of Support Vector Machine to Classify EEG Motor Imagery based on Differential Asymmetry
    Putranto, Yulianto Tejo
    Putra, Oddy Virgantara
    Hafidz, Isa
    Sardjono, Tri Arief
    Hariadi, Mochamad
    Purnomo, Mauridhi Hery
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (06): : 196 - 203
  • [24] Noise Benefits in Motor Imagery Classification using Ensemble Support Vector Machine
    Sampanna, Rujipan
    Mitaim, Sanya
    2014 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2014, : 53 - 56
  • [25] EEG Classification using Support Vector Machine
    Ines, Homri
    Slim, Yacoub
    Noureddine, Ellouze
    2013 10TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2013,
  • [26] Orthogonal matching pursuit-based feature selection for motor-imagery EEG signal classification
    Chatterjee, Rajdeep
    Chatterjee, Ankita
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2020, 64 (04) : 403 - 414
  • [27] EEG Signal Classification Using Empirical Mode Decomposition and Support Vector Machine
    Bajaj, Varun
    Pachori, Ram Bilas
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 2, 2012, 131 : 623 - 635
  • [28] Motor imagery EEG classification based on ensemble support vector learning
    Luo, Jing
    Gao, Xing
    Zhu, Xiaobei
    Wang, Bin
    Lu, Na
    Wang, Jie
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 193
  • [29] Characterization of Classifier Performance on Left and Right Limb Motor Imagery using Support Vector Machine Classification of EEG signal for left and right limb movement
    Singla, Shubham
    Garsha, S. N.
    Chatterjee, Somsirsa
    2016 5TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND EMBEDDED SYSTEMS (WECON), 2016, : 205 - 208
  • [30] Classification of EEG Signal Using Deep Learning Architectures Based Motor-Imagery for an Upper-Limb Rehabilitation Exoskeleton
    Maryam Khoshkhooy Titkanlou
    Duc Thien Pham
    Roman Mouček
    SN Computer Science, 6 (3)