CONVERGENCE ANALYSIS OF PROXIMAL GRADIENT ALGORITHM WITH EXTRAPOLATION FOR A CLASS OF CONVEX NONSMOOTH MINIMIZATION PROBLEMS

被引:0
|
作者
Pan, Mengxi [1 ]
Wen, Bo [2 ]
机构
[1] Hebei Univ Technol, Sch Sci, Tianjin, Peoples R China
[2] Hebei Univ Technol, Inst Math, Tianjin, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2023年 / 19卷 / 03期
关键词
nonsmooth convex minimization; proximal gradient algorithm; extrapolation; convergence analysis;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the proximal gradient algorithm with extrapolation (PG(e)) for solving a class of nonsmooth convex minimization problems, whose objective function in the sum of a continuously differentiable convex function with Lipschitz gradient and a proper closed convex function. We first establish the subsequential convergence of iterate generated by PG(e), then we prove that the convergence rate of objective function is O (1/k), which implies that the convergence rate of FISTA with fixed restart is also O (1/k). Finally , we conduct some numerical experiments to illustrate the theoretical results
引用
收藏
页码:477 / 487
页数:11
相关论文
共 50 条
  • [31] Difference-of-Convex Algorithm with Extrapolation for Nonconvex, Nonsmooth Optimization Problems
    Phan, Duy Nhat
    Thi, Hoai An Le
    MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (03) : 1973 - 1985
  • [32] STOCHASTIC PROXIMAL DIFFERENCE-OF-CONVEX ALGORITHM WITH SPIDER FOR A CLASS OF NONCONVEX NONSMOOTH REGULARIZED PROBLEMS
    Tu, Kai
    Zhang, Haibin
    Gao, Huan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (05) : 1191 - 1208
  • [33] Convergence rate of a relaxed inertial proximal algorithm for convex minimization
    Attouch, Hedy
    Cabot, Alexandre
    OPTIMIZATION, 2020, 69 (06) : 1281 - 1312
  • [34] Convergence rate of a proximal multiplier algorithm for separable convex minimization
    Sarmiento, O.
    Papa Quiroz, E. A.
    Oliveira, P. R.
    OPTIMIZATION, 2017, 66 (02) : 251 - 270
  • [35] A Modified Proximal Gradient Method for a Family of Nonsmooth Convex Optimization Problems
    Li Y.-Y.
    Zhang H.-B.
    Li F.
    Journal of the Operations Research Society of China, 2017, 5 (3) : 391 - 403
  • [36] A PERTURBED PARALLEL DECOMPOSITION METHOD FOR A CLASS OF NONSMOOTH CONVEX MINIMIZATION PROBLEMS
    MOUALLIF, K
    NGUYEN, VH
    STRODIOT, JJ
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (04) : 829 - 847
  • [37] A VARIANT OF THE PROXIMAL GRADIENT METHOD FOR CONSTRAINED CONVEX MINIMIZATION PROBLEMS
    Kesornprom, Suparat
    Kankam, Kunrada
    Inkrong, Papatsara
    Pholasa, Nattawut
    Cholamjiak, Prasit
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024
  • [38] Convergence rate analysis of proximal gradient methods with applications to composite minimization problems
    Sahu, D. R.
    Yao, J. C.
    Verma, M.
    Shukla, K. K.
    OPTIMIZATION, 2021, 70 (01) : 75 - 100
  • [39] AN ALGORITHM FOR NONSMOOTH CONVEX MINIMIZATION WITH ERRORS
    KIWIEL, KC
    MATHEMATICS OF COMPUTATION, 1985, 45 (171) : 173 - 180
  • [40] A SMOOTHING PROXIMAL GRADIENT ALGORITHM FOR NONSMOOTH CONVEX REGRESSION WITH CARDINALITY PENALTY
    Bian, Wei
    Chen, Xiaojun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 858 - 883