AMS-Net: Adaptive Multi-Scale Network for Image Compressive Sensing

被引:13
|
作者
Zhang, Kuiyuan [1 ]
Hua, Zhongyun [1 ]
Li, Yuanman [2 ]
Chen, Yongyong [1 ]
Zhou, Yicong [3 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[3] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressive sensing; convolutional neural networks; discrete wavelet transform; block compressive sampling; RECONSTRUCTION;
D O I
10.1109/TMM.2022.3198323
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, deep convolutional neural networks have been applied to image compressive sensing (CS) to improve reconstruction quality while reducing computation cost. Existing deep learning-based CS methods can be divided into two classes: sampling image at single scale and sampling image across multiple scales. However, these existing methods treat the image low-frequency and high-frequency components equally, which is an obstruction to get a high reconstruction quality. This paper proposes an adaptive multi-scale image CS network in wavelet domain called AMS-Net, which fully exploits the different importance of image low-frequency and high-frequency components. First, the discrete wavelet transform is used to decompose an image into four sub-bands, namely the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands. Considering that the LL sub-band is more important to the final reconstruction quality, the AMS-Net allocates it a larger sampling ratio, while allocating the other three sub-bands a smaller one. Since different blocks in each sub-band have different sparsity, the sampling ratio is further allocated block-by-block within the four sub-bands. Then a dual-channel scalable sampling model is developed to adaptively sample the LL and the other three sub-bands at arbitrary sampling ratios. Finally, by unfolding the iterative reconstruction process of the traditional multi-scale block CS algorithm, we construct a multi-stage reconstruction model to utilize multi-scale features for further improving the reconstruction quality. Experimental results demonstrate that the proposed model outperforms both the traditional and state-of-the-art deep learning-based methods.
引用
收藏
页码:5676 / 5689
页数:14
相关论文
共 50 条
  • [21] DYNAMIC MULTI-SCALE NETWORK FOR REMOTE SENSING IMAGE SUPER-RESOLUTION
    Yao, Ping
    He, Peng
    Cheng, Siyuan
    Fu, Li
    Guo, Zhihao
    Zhao, Jianghong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3766 - 3769
  • [22] Remote Sensing Image Fusion Using Multi-Scale Convolutional Neural Network
    Wei Shi
    ChaoBen Du
    BingBing Gao
    JiNing Yan
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 1677 - 1687
  • [23] Image compressed sensing using multi-scale residual generative adversarial network
    Tian, Jinpeng
    Yuan, Wenjie
    Tu, Yunxuan
    VISUAL COMPUTER, 2022, 38 (12): : 4193 - 4202
  • [24] Multi-scale generative adversarial network for image compressed sensing and reconstruction algorithm
    Zeng C.-Y.
    Yan K.
    Wang Z.-F.
    Wang Z.-H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (10): : 2923 - 2931
  • [25] Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation
    Liu, Sihan
    Ma, Yiwei
    Zhang, Xiaoqing
    Wang, Haowei
    Ji, Jiayi
    Sun, Xiaoshuai
    Ji, Rongrong
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 26648 - 26658
  • [26] Image compressed sensing using multi-scale residual generative adversarial network
    Jinpeng Tian
    Wenjie Yuan
    Yunxuan Tu
    The Visual Computer, 2022, 38 : 4193 - 4202
  • [27] Multi-scale graph reasoning network for remote sensing image change detection
    Yu, Shangguan
    Li, Jinjiang
    Zheng, Chen
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (10) : 3306 - 3332
  • [28] Multi-scale Attentive Fusion Network for Remote Sensing Image Change Captioning
    Chen, Cai
    Wang, Yi
    Yap, Kim-Hui
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [29] AMS-Net: Attention mechanism based multi-size dual light source network for surface roughness prediction
    Zhang, Taohong
    Guo, Xuxu
    Fan, Suli
    Li, Qianqian
    Chen, Saian
    Guo, Xueqiang
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 81 : 371 - 385
  • [30] Remote Sensing Image Fusion Using Multi-Scale Convolutional Neural Network
    Shi, Wei
    Du, ChaoBen
    Gao, BingBing
    Yan, JiNing
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (07) : 1677 - 1687