Quantum simulation of the one-dimensional Fermi-Hubbard model as a Z2 lattice-gauge theory

被引:0
|
作者
Khodaeva, Uliana E. [1 ]
Kovrizhin, Dmitry L. [2 ]
Knolle, Johannes [1 ,3 ,4 ]
机构
[1] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[2] CY Cergy Paris Univ, LPTM, UMR CNRS 8089, F-95032 Cergy Pontoise, France
[3] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[4] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1103/PhysRevResearch.6.013032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Fermi-Hubbard model is one of the central paradigms in the physics of strongly correlated quantum many-body systems. Here we propose a quantum circuit algorithm based on the Z2 lattice gauge theory (LGT) representation of the one-dimensional Fermi-Hubbard model, which is suitable for implementation on current NISQ quantum computers. Within the LGT description there is an extensive number of local conserved quantities commuting with the Hamiltonian. We show how these conservation laws can be used to implement an efficient error-mitigation scheme. The latter is based on a postselection of states for noisy quantum simulators. While the LGT description requires a deeper quantum-circuit compared to a Jordan-Wigner (JW) based approach, remarkably, we find that our error-correction protocol leads to results being on par with a standard JW implementation on noisy quantum simulators.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array
    Hensgens, T.
    Fujita, T.
    Janssen, L.
    Li, Xiao
    Van Diepen, C. J.
    Reichl, C.
    Wegscheider, W.
    Das Sarma, S.
    Vandersypen, L. M. K.
    NATURE, 2017, 548 (7665) : 70 - +
  • [22] High-temperature transport in the one-dimensional mass-imbalanced Fermi-Hubbard model
    Kiely, Thomas G.
    Mueller, Erich J.
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [23] Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits (vol 94, 032338, 2016)
    Reiner, Jan-Michael
    Marthaler, Michael
    Braumueller, Jochen
    Weides, Martin
    Schoen, Gerd
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [24] Nonequilibrium correlation dynamics in the one-dimensional Fermi-Hubbard model: A testbed for the two-particle reduced density matrix theory
    Donsa, Stefan
    Lackner, Fabian
    Burgdoerfer, Joachim
    Bonitz, Michael
    Kloss, Benedikt
    Rubio, Angel
    Brezinova, Iva
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [25] Temporal decay of Neel order in the one-dimensional Fermi-Hubbard model (vol 91, 053628, 2015)
    Bauer, A.
    Dorfner, F.
    Heidrich-Meisner, F.
    PHYSICAL REVIEW A, 2018, 97 (01)
  • [26] Controllable finite-momenta dynamical quasicondensation in the periodically driven one-dimensional Fermi-Hubbard model
    Cook, Matthew W.
    Clark, Stephen R.
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [27] Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter
    Zohar, Erez
    Farace, Alessandro
    Reznik, Benni
    Cirac, J. Ignacio
    PHYSICAL REVIEW LETTERS, 2017, 118 (07)
  • [28] Correspondence between the Hamiltonian cycle problem and the quantum Z2 lattice gauge theory
    Cui, Xiaopeng
    Shi, Yu
    EPL, 2023, 144 (04)
  • [29] Z2 MONOPOLES IN THE STANDARD SU(2) LATTICE GAUGE-THEORY MODEL
    MACK, G
    PETKOVA, VB
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1982, 12 (02): : 177 - 184
  • [30] Trotter errors in digital adiabatic quantum simulation of quantum DOUBLE-STRUCK CAPITAL Z2 lattice gauge theory
    Cui, Xiaopeng
    Shi, Yu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (30):