A new local function and a new compatibility type in ideal topological spaces

被引:0
|
作者
Yalaz, Ferit [1 ]
Kaymakci, Aynur Keskin [1 ]
机构
[1] Selcuk Univ, Fac Sci, Dept Math, TR-42130 Konya, Turkiye
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 03期
关键词
ideal topological space; local function; local closure function; closure operator; Hayashi-Samuel space; closure compatibility; CONTINUITY;
D O I
10.3934/math.2023358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, a & sigmaf;*(gamma)-local function is defined and its properties are examined. This newly defined local function is compared with the well-known local function and the local closure function according to the relation of being a subset. With the help of this new local function, the psi(& sigmaf;*gamma) operator is defined and topologies are obtained. Moreover, alternative answers are given to an open question found in the literature. psi(& sigmaf;*gamma)-compatibility is defined and its properties are examined.psi(& sigmaf;*gamma)-compatibility is characterized with the help of the new operator. Finally, new spaces were defined and characterized.
引用
收藏
页码:7097 / 7114
页数:18
相关论文
共 50 条
  • [21] On some topological properties of a new type difference sequence spaces
    Karakas, Abdulkadir
    Altin, Yavuz
    Et, Mikail
    ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015), 2015, 1676
  • [22] New Notions in Ideal Topological Space
    Santhini, C.
    Suganya, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (05): : 19 - 31
  • [23] On a new convergence in topological spaces
    Ruan, Xiao-jun
    Xu, Xiao-quan
    OPEN MATHEMATICS, 2019, 17 : 1716 - 1723
  • [24] New function spaces of Morrey-Campanato type on spaces of homogeneous type
    Tang, Lin
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (02) : 625 - 644
  • [25] Subsets of ideal topological spaces
    Jeyanthi, V.
    Devi, V. Renuka
    Sivaraj, D.
    ACTA MATHEMATICA HUNGARICA, 2007, 114 (1-2) : 117 - 131
  • [26] Soft ideal topological spaces
    Matejdes, Milan
    SOFT COMPUTING, 2023, 27 (10) : 6749 - 6760
  • [27] Fuzzy ideal topological spaces
    Koam, Ali N. A.
    Ibedou, Ismail
    Abbas, S. E.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (06) : 5919 - 5928
  • [28] Subsets of ideal topological spaces
    V. Jeyanthi
    V. Renuka Devi
    D. Sivaraj
    Acta Mathematica Hungarica, 2007, 114 : 117 - 131
  • [29] Connectedness of Ideal Topological Spaces
    Modak, Shyamapada
    Noiri, Takashi
    FILOMAT, 2015, 29 (04) : 661 - 665
  • [30] ☆-HYPERCONNECTED IDEAL TOPOLOGICAL SPACES
    Ekici, Erdal
    Noiri, Takashi
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2012, 58 (01): : 121 - 129