Shotgun Threshold for Sparse Erdos-Renyi Graphs

被引:0
|
作者
Ding, Jian [1 ]
Jiang, Yiyang [1 ]
Ma, Heng [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Vegetation; DNA; Upper bound; Stress; Sequential analysis; Random variables; Neural networks; Shotgun assembly; Erdoos-Renyi graphs; phase transition; Poisson-Galton-Watson trees; ISOMORPHISM; THEOREM;
D O I
10.1109/TIT.2023.3298515
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the shotgun assembly problem for a graph,we are given the empirical profile for rooted neighborhoods of depth r(up to isomorphism) for somer >= 1 and we wish to recover the underlying graph up to isomorphism. When the underlying graph is an Erdos-Renyi G(n,lambda / n), we show that the shotgun assembly threshold r(& lowast; )satisfies that r(& lowast;) approximate to logn / log(lambda(2)gamma lambda(-1 )where gamma(lambda )is the probability for two independent Poisson-Galton-Watson trees with parameter lambda to be rooted isomorphic with each other. Our result sharpens a constant factor in a previous work by Mossel and Ross (2019) and thus solves a question therein
引用
收藏
页码:7373 / 7391
页数:19
相关论文
共 50 条
  • [31] Consensus of Interacting Particle Systems on Erdos-Renyi Graphs
    Schoenebeck, Grant
    Yu, Fang-Yi
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1945 - 1964
  • [32] On large deviation properties of Erdos-Renyi random graphs
    Engel, A
    Monasson, R
    Hartmann, AK
    JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) : 387 - 426
  • [33] Erdos-Renyi Poissonized
    Curien, Nicolas
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [34] Gambler's ruin problem on Erdos-Renyi graphs
    Neda, Zoltan
    Davidova, Larissa
    Ujvari, Szerena
    Istrate, Gabriel
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 468 : 147 - 157
  • [35] Seeded Graph Matching for Correlated Erdos-Renyi Graphs
    Lyzinski, Vince
    Fishkind, Donniell E.
    Priebe, Carey E.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 3513 - 3540
  • [36] Concentration of the spectral norm of Erdos-Renyi random graphs
    Lugosi, Gabor
    Mendelson, Shahar
    Zhivotovskiy, Nikita
    BERNOULLI, 2020, 26 (03) : 2253 - 2274
  • [37] ERDOS-RENYI LAWS
    CSORGO, S
    ANNALS OF STATISTICS, 1979, 7 (04): : 772 - 787
  • [38] Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy
    Sealfon, Adam
    Ullman, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [39] Erdos-Renyi phase transition in the Axelrod model on complete graphs
    Pinto, Sebastian
    Balenzuela, Pablo
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [40] The Large Deviation Principle for Inhomogeneous Erdos-Renyi Random Graphs
    Markering, Maarten
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) : 711 - 727