Fairness in graph-based semi-supervised learning

被引:4
|
作者
Zhang, Tao [1 ]
Zhu, Tianqing [1 ]
Han, Mengde [1 ]
Chen, Fengwen [2 ]
Li, Jing [2 ]
Zhou, Wanlei [3 ]
Yu, Philip S. [4 ]
机构
[1] Univ Technol Sydney, Sch Comp Sci, Ctr Cyber Secur & Privacy, Sydney, NSW, Australia
[2] Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW, Australia
[3] City Univ Macau, Inst Data Sci, Macau, Madhya Pradesh, Peoples R China
[4] Univ Illinois, Dept Comp Sci, Chicago, IL USA
关键词
Fairness; Discrimination; Machine learning; Semi-supervised learning; BIAS;
D O I
10.1007/s10115-022-01738-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning is widely deployed in society, unleashing its power in a wide range of applications owing to the advent of big data. One emerging problem faced by machine learning is the discrimination from data, and such discrimination is reflected in the eventual decisions made by the algorithms. Recent study has proved that increasing the size of training (labeled) data will promote the fairness criteria with model performance being maintained. In this work, we aim to explore a more general case where quantities of unlabeled data are provided, indeed leading to a new form of learning paradigm, namely fair semi-supervised learning. Taking the popularity of graph-based approaches in semi-supervised learning, we study this problem both on conventional label propagation method and graph neural networks, where various fairness criteria can be flexibly integrated. Our developed algorithms are proved to be non-trivial extensions to the existing supervised models with fairness constraints. Extensive experiments on real-world datasets exhibit that our methods achieve a better trade-off between classification accuracy and fairness than the compared baselines.
引用
收藏
页码:543 / 570
页数:28
相关论文
共 50 条
  • [31] Graph-based Semi-Supervised & Active Learning for Edge Flows
    Jia, Junteng
    Schaub, Michael T.
    Segarra, Santiago
    Benson, Austin R.
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 761 - 771
  • [32] GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1321 - +
  • [33] Image colourisation using graph-based semi-supervised learning
    Liu, B. -B.
    Lu, Z. -M.
    IET IMAGE PROCESSING, 2009, 3 (03) : 115 - 120
  • [34] Matrix Completion for Graph-Based Deep Semi-Supervised Learning
    Taherkhani, Fariborz
    Kazemi, Hadi
    Nasrabadi, Nasser M.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5058 - 5065
  • [35] A Sampling Theory Perspective of Graph-Based Semi-Supervised Learning
    Anis, Aamir
    El Gamal, Aly
    Avestimehr, A. Salman
    Ortega, Antonio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2322 - 2342
  • [36] Model Change Active Learning in Graph-Based Semi-supervised Learning
    Miller, Kevin S.
    Bertozzi, Andrea L.
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (02) : 1270 - 1298
  • [37] Analysis of label noise in graph-based semi-supervised learning
    de Aquino Afonso, Bruno Klaus
    Berton, Lilian
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1127 - 1134
  • [38] A comparison of graph-based semi-supervised learning for data augmentation
    de Oliveira, Willian Dihanster G.
    Penatti, Otavio A. B.
    Berton, Lilian
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 264 - 271
  • [39] Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning
    Wan, Sheng
    Pan, Shirui
    Yang, Jian
    Gong, Chen
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10049 - 10057
  • [40] Joint sparse graph and flexible embedding for graph-based semi-supervised learning
    Dornaika, F.
    El Traboulsi, Y.
    NEURAL NETWORKS, 2019, 114 : 91 - 95