Semi-Supervised Learning with Coevolutionary Generative Adversarial Networks

被引:1
|
作者
Toutouh, Jamal [1 ]
Nalluru, Subhash [2 ]
Hemberg, Erik [2 ]
O'Reilly, Una-May [2 ]
机构
[1] Univ Malaga, ITIS Software, Malaga, Spain
[2] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
10.1145/3583131.3590426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It can be expensive to label images for classification. Good classifiers or high-quality images can be trained on unlabeled data with Generative Adversarial Network (GAN) methods. We use coevolutionary algorithms with Semi-Supervised GANs (SSL-GANs) that work with a few labeled and some more unlabeled images to train both a good classifier and a high-quality image generator. A spatial coevolutionary algorithm introduces diversity into the GAN training. We use a two-dimensional grid of GANs to gain discriminator loss diversity with a distributed cell-level coevolutionary algorithm. The GAN components are exchanged between neighboring cells based on performance and population-based hyperparameter tuning. The approach is demonstrated on two separate benchmark datasets, and with only a few labels, we simultaneously achieve good classification accuracy and high generated image quality score. In addition, the generated image quality and classification accuracy are competitive to state-of-the-art methods.
引用
收藏
页码:568 / 576
页数:9
相关论文
共 50 条
  • [21] A Semi-supervised Encoder Generative Adversarial Networks Model for Image Classification
    Fu, Xiao
    Shen, Yuan-Tong
    Li, Hong-Wei
    Cheng, Xiao-Mei
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (03): : 531 - 539
  • [22] Semi-supervised community detection method based on generative adversarial networks
    Liu, Xiaoyang
    Zhang, Mengyao
    Liu, Yanfei
    Liu, Chao
    Li, Chaorong
    Wang, Wei
    Zhang, Xiaoqin
    Bouyer, Asgarali
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (03)
  • [23] Semi-supervised Multi-category Classification with Generative Adversarial Networks
    Rastogi, Reshma
    Gangnani, Ritesh
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 286 - 294
  • [24] Localizing Microseismic Events Using Semi-Supervised Generative Adversarial Networks
    Feng, Qiang
    Han, Liguo
    Zhao, Binghui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] SEMI-SUPERVISED VARIATIONAL GENERATIVE ADVERSARIAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Hao
    Tao, Chao
    Qi, Ji
    Li, HaiFeng
    Tang, YuQi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9792 - 9794
  • [26] Semi-supervised image attribute editing using generative adversarial networks
    Dogan, Yahya
    Keles, Hacer Yalim
    NEUROCOMPUTING, 2020, 401 (401) : 338 - 352
  • [27] SEMI-SUPERVISED CHANGE DETECTION BASED ON GRAPHS WITH GENERATIVE ADVERSARIAL NETWORKS
    Liu, Junfu
    Chen, Keming
    Xu, Guangluan
    Li, Hao
    Yan, Menglong
    Diao, Wenhui
    Sun, Xian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 74 - 77
  • [28] Efficient semi-supervised learning model for limited otolith data using generative adversarial networks
    El Habouz, Youssef
    El Mourabit, Yousef
    Iggane, Mbark
    El Habouz, Hammou
    Lukumon, Gafari
    Nouboud, Fathallah
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 11909 - 11922
  • [29] Semi-Supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks
    Yan, Peiyao
    He, Feng
    Yang, Yajie
    Hu, Fei
    IEEE ACCESS, 2020, 8 : 54135 - 54144
  • [30] Efficient semi-supervised learning model for limited otolith data using generative adversarial networks
    Youssef El Habouz
    Yousef El Mourabit
    Mbark Iggane
    Hammou El Habouz
    Gafari Lukumon
    Fathallah Nouboud
    Multimedia Tools and Applications, 2024, 83 : 11909 - 11922