Semi-Supervised Learning with Coevolutionary Generative Adversarial Networks

被引:1
|
作者
Toutouh, Jamal [1 ]
Nalluru, Subhash [2 ]
Hemberg, Erik [2 ]
O'Reilly, Una-May [2 ]
机构
[1] Univ Malaga, ITIS Software, Malaga, Spain
[2] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
10.1145/3583131.3590426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It can be expensive to label images for classification. Good classifiers or high-quality images can be trained on unlabeled data with Generative Adversarial Network (GAN) methods. We use coevolutionary algorithms with Semi-Supervised GANs (SSL-GANs) that work with a few labeled and some more unlabeled images to train both a good classifier and a high-quality image generator. A spatial coevolutionary algorithm introduces diversity into the GAN training. We use a two-dimensional grid of GANs to gain discriminator loss diversity with a distributed cell-level coevolutionary algorithm. The GAN components are exchanged between neighboring cells based on performance and population-based hyperparameter tuning. The approach is demonstrated on two separate benchmark datasets, and with only a few labels, we simultaneously achieve good classification accuracy and high generated image quality score. In addition, the generated image quality and classification accuracy are competitive to state-of-the-art methods.
引用
收藏
页码:568 / 576
页数:9
相关论文
共 50 条
  • [1] Semi-supervised Learning Using Generative Adversarial Networks
    Chang, Chuan-Yu
    Chen, Tzu-Yang
    Chung, Pau-Choo
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 892 - 896
  • [2] Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks
    Lai, Wei-Sheng
    Huang, Jia-Bin
    Yang, Ming-Hsuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [3] Survey on Implementations of Generative Adversarial Networks for Semi-Supervised Learning
    Sajun, Ali Reza
    Zualkernan, Imran
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [4] Generative Adversarial Training for Supervised and Semi-supervised Learning
    Wang, Xianmin
    Li, Jing
    Liu, Qi
    Zhao, Wenpeng
    Li, Zuoyong
    Wang, Wenhao
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [5] SEMI-SUPERVISED LEARNING WITH GENERATIVE ADVERSARIAL NETWORKS FOR ARABIC DIALECT IDENTIFICATION
    Zhang, Chunlei
    Zhang, Qian
    Hansen, John H. L.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5986 - 5990
  • [6] Semi-Supervised Learning with Generative Adversarial Networks for Pathological Speech Classification
    Trinh, Nam H.
    O'Brien, Darragh
    2020 31ST IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2020, : 214 - 218
  • [7] Semi-supervised Seizure Prediction with Generative Adversarial Networks
    Nhan Duy Truong
    Zhou, Luping
    Kavehei, Omid
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2369 - 2372
  • [8] Semi-Supervised Dose Prediction with Generative Adversarial Learning
    Lam, D.
    Sun, B.
    MEDICAL PHYSICS, 2019, 46 (06) : E418 - E418
  • [9] Semi-supervised Learning on Graphs with Generative Adversarial Nets
    Ding, Ming
    Tang, Jie
    Zhang, Jie
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 913 - 922
  • [10] Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification
    Tu, Ya
    Lin, Yun
    Wang, Jin
    Kim, Jeong-Uk
    CMC-COMPUTERS MATERIALS & CONTINUA, 2018, 55 (02): : 243 - 254