A random forest algorithm under the ensemble approach for feature selection and classification

被引:1
|
作者
Kharwar, Ankit [1 ]
Thakor, Devendra [1 ]
机构
[1] Uka Tarsadia Univ, Chhotubhai Gopalbhai Patel Inst Technol, Comp Engn, Bardoli, Gujarat, India
关键词
intrusion detection; anomaly detection; machine learning; ensemble methods; random forest; feature selection; feature importance; classification; cybersecurity; network security; INTRUSION DETECTION SYSTEM; NETWORK ANOMALY DETECTION; DEEP LEARNING APPROACH; MODEL; ROBUST; SET;
D O I
10.1504/IJCNDS.2023.131737
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the years, research analysts have proposed diverse intrusion detection systems' (IDS) tactics to manage the increasing number and complexity of computer threats. IDS takes all the data over the network and analyses the data using machine learning for finding the attacks. It is tough to find attacks on the network because it contains fewer records than standard data. It is significantly challenging to design an IDS for high accuracy. It also foregrounds different feature selection methods to select the best feature subset. We use the random forest feature importance for finding the best features. Single classifiers can mislead the find result, so we use random forest as classification with the help of best features. The proposed model is assessed on standard datasets like KDD'99, NSL-KDD, and UNSW-NB15. The experimental result shows that the proposed model outperforms the existing methods in terms of accuracy, detection rate, and false alarm rate.
引用
收藏
页码:426 / 447
页数:23
相关论文
共 50 条
  • [21] Random feature subset selection for ensemble based classification of data with missing features
    DePasquale, Joseph
    Polikar, Robi
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2007, 4472 : 251 - +
  • [22] Ensemble of optimal trees, random forest and random projection ensemble classification
    Khan, Zardad
    Gul, Asma
    Perperoglou, Aris
    Miftahuddin, Miftahuddin
    Mahmoud, Osama
    Adler, Werner
    Lausen, Berthold
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (01) : 97 - 116
  • [23] Ensemble of optimal trees, random forest and random projection ensemble classification
    Zardad Khan
    Asma Gul
    Aris Perperoglou
    Miftahuddin Miftahuddin
    Osama Mahmoud
    Werner Adler
    Berthold Lausen
    Advances in Data Analysis and Classification, 2020, 14 : 97 - 116
  • [24] Software Defect Prediction using Feature Selection and Random Forest Algorithm
    Ibrahim, Dyana Rashid
    Ghnemat, Rawan
    Hudaib, Amjad
    2017 INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2017, : 252 - 257
  • [25] Forest optimization algorithm-based feature selection using classifier ensemble
    Moorthy, Usha
    Gandhi, Usha Devi
    COMPUTATIONAL INTELLIGENCE, 2020, 36 (04) : 1445 - 1462
  • [26] ENSEMBLE FEATURE SELECTION APPROACH BASED ON FEATURE RANKING FOR RICE SEED IMAGES CLASSIFICATION
    Dzi Lam Tran Tuan
    Surinwarangkoon, Thongchai
    Meethongjan, Kittikhun
    Vinh Truong Hoang
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 18 (03) : 198 - 206
  • [27] A Class-specific Ensemble Feature Selection Approach for Classification Problems
    Soares, Caio
    Williams, Philicity
    Gilbert, Juan E.
    Dozier, Gerry
    PROCEEDINGS OF THE 48TH ANNUAL SOUTHEAST REGIONAL CONFERENCE (ACM SE 10), 2010, : 174 - 179
  • [28] DIFFERENTIAL EVOLUTION ALGORITHM SUPPORTED RANDOM FOREST CLASSIFIER FOR EFFECTIVE FEATURE SELECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES
    Vidhya, S.
    Balaji, M.
    Raj, E. Fantin Irudaya
    Kamaraj, V.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2023, 85 (01): : 131 - 142
  • [29] Liver Cancer Classification Using Random Forest and Extreme Gradient Boosting (XGBoost) with Genetic Algorithm as Feature Selection
    Desdhanty, Vabiyana Safira
    Rustam, Zuherman
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [30] DIFFERENTIAL EVOLUTION ALGORITHM SUPPORTED RANDOM FOREST CLASSIFIER FOR EFFECTIVE FEATURE SELECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES
    Vidhya, S.
    Balaji, M.
    Fantin Irudaya Raj, E.
    Kamaraj, V.
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2023, 85 (01): : 131 - 142