Assessing the Impacts of Land Use, Land Cover, and Climate Change on the Hydrological Regime of a Humid Tropical Basin

被引:0
|
作者
Abraham, Alka [1 ,2 ]
Kundapura, Subrahmanya [3 ]
机构
[1] Natl Inst Technol Karnataka, Dept Water Resources & Ocean Engn, Mangaluru 575025, Karnataka, India
[2] Mar Athanasius Coll Engn, Dept Civil Engn, Kothamangalam 686666, Kerala, India
[3] Natl Inst Tech nol Karnataka, Fac Water Resources Engn, Dept Water Resources & Ocean Engn, Mangaluru 575025, Karnataka, India
关键词
Ecologically relevant flow; Google earth engine (GEE); Land change modeler (LCM); Soil and water assessment tool (SWAT); Representative concentration pathway (RCP); RIVER; FLOW; PREDICTION; MODELS;
D O I
10.1061/NHREFO.NHENG-1801
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Climate change and land use land cover (LULC) change are two major factors influencing river basin hydrology. This study explored these drivers' isolated and combined impacts on the ecologically relevant flow in the Achencoil basin, Kerala, India. The LULC classification in the study is carried out with the Random Forest (RF) algorithm in the Google Earth Engine (GEE) platform, and Land Change Modeler (LCM) is incorporated for change detection and projection. The future climate data from the National Aeronautics and Space Administration Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) is used for climate change impact assessment. The Soil and Water Assessment Tool (SWAT) is employed to simulate streamflow under LULC and climate change scenarios. The historical and projected future LULC change in the basin revealed an increase in the built-up and barren land, with a significant decrease in agricultural and forest areas. The results show that the projected future precipitation will decrease under the RCP 4.5 and increase under the RCP 8.5 scenario. The projected average maximum and minimum temperature are expected to increase under both scenarios in the basin. The LULC 2050 scenario shows the most significant rise in average annual streamflow, at 7.5%. Whereas in the climate change scenarios, the average annual flow decreases under RCP 4.5 and increases under RCP 8.5. The combined impacts of climate change and LULC change are relatively higher than the isolated effects of these drivers in the basin. The study outcomes are expected to help policymakers consider the effect of climate change and LULC change on the river's hydrology so as to implement the management activities that account for the riverine ecosystem. Changes in land use land cover and meteorological parameters are important environmental issues that must be pointed out. These changes will affect the river flow and eventually affect the river ecosystem. The current research investigates the combined effects of land use land cover and climate change in the flow of the Achencoil basin in India. This study area is one of the most frequently flooded in the state. As a result, the projected climate and land use land cover provide an idea of future streamflow in the basin. This research enables a better understanding of the response of streamflow components to climate variability and land use land cover changes in the Achencoil basin, which might help policymakers develop strategies for regional water resource management. Implementing these policies and management strategies will necessitate collaboration and coordination across various levels of government, private sector, and local communities in order to mitigate the risk and support a sustainable riverine ecosystem.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] IMPACTS OF LAND USE/LAND COVER CHANGE ON CLIMATE AND FUTURE RESEARCH PRIORITIES
    Mahmood, Rezaul
    Pielke, Roger A., Sr.
    Hubbard, Kenneth G.
    Niyogi, Dev
    Bonan, Gordon
    Lawrence, Peter
    McNider, Richard
    McAlpine, Clive
    Etter, Andres
    Gameda, Samuel
    Qian, Budong
    Carleton, Andrew
    Beltran-Przekurat, Adriana
    Chase, Thomas
    Quintanar, Arturo I.
    Adegoke, Jimmy O.
    Vezhapparambu, Sajith
    Conner, Glen
    Asefi, Salvi
    Sertel, Elif
    Legates, David R.
    Wu, Yuling
    Hale, Robert
    Frauenfeld, Oliver W.
    Watts, Anthony
    Shepherd, Marshall
    Mitra, Chandana
    Anantharaj, Valentine G.
    Fall, Souleymane
    Lund, Robert
    Trevino, Anna
    Blanken, Peter
    Du, Jinyang
    Chang, Hsin-I
    Leeper, Ronni E.
    Nair, Udaysankar S.
    Dobler, Scott
    Deo, Ravinesh
    Syktus, Jozef
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2010, 91 (01) : 37 - 46
  • [32] Climate Impacts of Land-Cover and Land-Use Changes in Tropical Islands under Conditions of Global Climate Change
    Comarazamy, Daniel E.
    Gonzalez, Jorge E.
    Luvall, Jeffrey C.
    Rickman, Douglas L.
    Bornstein, Robert D.
    JOURNAL OF CLIMATE, 2013, 26 (05) : 1535 - 1550
  • [33] Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin
    Siqueira Junior, J. L.
    Tomasella, J.
    Rodriguez, D. A.
    CLIMATIC CHANGE, 2015, 129 (1-2) : 117 - 129
  • [34] Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin
    J. L. Siqueira Júnior
    J. Tomasella
    D. A. Rodriguez
    Climatic Change, 2015, 129 : 117 - 129
  • [35] Hydrological response to future changes in climate and land use/land cover in the Hanjiang River Basin
    Yang, Liu
    Xu, Yanqi
    Cao, Qian
    Niu, Zigeng
    Luo, Zengliang
    Wang, Lunche
    NATURAL HAZARDS, 2024, : 4803 - 4836
  • [36] Hydrological impacts of global land cover change and human water use
    Bosmans, Joyce H. C.
    van Beek, Ludovicus P. H.
    Sutanudjaja, Edwin H.
    Bierkens, Marc F. P.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (11) : 5603 - 5626
  • [37] Assessing the impacts of climate and land use land cover changes on hydrological droughts in the Yellow River Basin using SWAT model with time-varying parameters
    Li, Yunyun
    Chang, Jianxia
    Luo, Lifeng
    2017 6TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2017, : 153 - 158
  • [38] A comparison of hydrological models for assessing the impact of land use and climate change on discharge in a tropical catchment
    Cornelissen, Thomas
    Diekkrueger, Bernd
    Giertz, Simone
    JOURNAL OF HYDROLOGY, 2013, 498 : 221 - 236
  • [39] Impacts of Land Use and Land Cover Change on Vegetation Diversity of Tropical Highland in Ethiopia
    Hussein, Abdulbasit
    APPLIED AND ENVIRONMENTAL SOIL SCIENCE, 2023, 2023
  • [40] Modeling hydrological impacts of groundwater level in the context of climate and land cover change
    Wu, Ray-Shyan
    Shih, Dong-Sin
    TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 2018, 29 (03): : 341 - 353