A CONJECTURE OF MERCA ON CONGRUENCES MODULO POWERS OF 2 FOR PARTITIONS INTO DISTINCT PARTS

被引:0
|
作者
Du, Julia Q. D. [1 ]
Tang, Dazhao [2 ]
机构
[1] Hebei Normal Univ, Hebei Int Joint Res Ctr Math & Interdisciplinary S, Sch Math Sci, Shijiazhuang 050024, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
congruences; internal congruences; partitions; distinct parts; modular forms;
D O I
10.1017/S0004972723000229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q(n) denote the number of partitions of n into distinct parts. Merca ['Ramanujan-type congruences modulo 4 for partitions into distinct parts', An. St. Univ. Ovidius Constan,ta 30(3) (2022), 185-199] derived some congruences modulo 4 and 8 for Q(n) and posed a conjecture on congruences modulo powers of 2 enjoyed by Q(n). We present an approach which can be used to prove a family of internal congruence relations modulo powers of 2 concerning Q(n). As an immediate consequence, we not only prove Merca's conjecture, but also derive many internal congruences modulo powers of 2 satisfied by Q(n). Moreover, we establish an infinite family of congruence relations modulo 4 for Q(n).
引用
收藏
页码:26 / 36
页数:11
相关论文
共 50 条
  • [41] Congruences modulo powers of 3 for 3-and 9-colored generalized Frobenius partitions
    Wang, Liuquan
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3370 - 3384
  • [42] Congruences for the number of k-tuple partitions with distinct even parts
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2013, 313 (15) : 1565 - 1568
  • [43] Infinite families of congruences modulo powers of 2 for some partition functions involving only odd parts
    Baruah, Nayandeep Deka
    Das, Hirakjyoti
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (08) : 1843 - 1862
  • [44] Cubic partitions modulo powers of 5
    Michael D. Hirschhorn
    The Ramanujan Journal, 2020, 51 : 67 - 84
  • [45] Cubic partitions modulo powers of 5
    Hirschhorn, Michael D.
    RAMANUJAN JOURNAL, 2020, 51 (01): : 67 - 84
  • [46] Congruences modulo powers of 2 for t-colored overpartitions
    Nayaka, S. Shivaprasada
    Naika, M. S. Mahadeva
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [47] CONGRUENCES MODULO POWERS OF 2 FOR THE SIGNATURE OF COMPLETE-INTERSECTIONS
    LIBGOBER, A
    WOOD, J
    ZAGIER, D
    QUARTERLY JOURNAL OF MATHEMATICS, 1980, 31 (122): : 209 - 218
  • [48] Congruences modulo powers of 2 for t-colored overpartitions
    S. Shivaprasada Nayaka
    M. S. Mahadeva Naika
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [49] Congruences modulo powers of 2 for l-regular overpartitions
    Adiga, Chandrashekar
    Ranganatha, D.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2017, 32 (02) : 147 - 163
  • [50] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (04): : 1038 - 1054