Forecasting cryptocurrencies volatility using statistical and machine learning methods: A comparative study

被引:11
|
作者
Dudek, Grzegorz [1 ]
Fiszeder, Piotr [2 ,3 ,4 ]
Kobus, Pawel
Orzeszko, Witold [2 ]
机构
[1] Czestochowa Tech Univ, Dept Elect Engn, Czestochowa, Poland
[2] Nicolaus Copernicus Univ Torun, Fac Econ Sci & Management, Torun, Poland
[3] Prague Univ Econ & Business, Fac Finance & Accounting, Prague, Czech Republic
[4] Warsaw Univ Life Sci, Warsaw, Poland
关键词
Machine learning; Cryptocurrency; Bitcoin; Volatility; Neural network; GARCH; HAR; LASSO; SVR; LSTM; NEURAL-NETWORKS; EXCHANGE-RATES; TIME-SERIES; MODELS; REGRESSION; BITCOIN; GARCH; CURRENCIES; SELECTION; RISK;
D O I
10.1016/j.asoc.2023.111132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Forecasting cryptocurrency volatility can help investors make better-informed investment decisions in order to minimize risks and maximize potential profits. Accurate forecasting of cryptocurrency price fluctuations is crucial for effective portfolio management and contributes to the stability of the financial system by identifying potential threats and developing risk management strategies. The objective of this paper is to provide a comprehensive study of statistical and machine learning methods for predicting daily and weekly volatility of the following four cryptocurrencies: Bitcoin, Ethereum, Litecoin, and Monero. Several models and forecasting methods are compared in terms of their forecasting accuracy, i.e., HAR (heterogeneous autoregressive), ARFIMA (autoregressive fractionally integrated moving average), GARCH (generalized autoregressive conditional heteroscedasticity), LASSO (least absolute shrinkage and selection operator), RR (ridge regression), SVR (support vector regression), MLP (multilayer perceptron), FNM (fuzzy neighbourhood model), RF (random forest), and LSTM (long short-term memory). The realized variance calculated from intraday returns is used as the input variable for the models. In order to assess the predictive power of the models considered, the model confidence set (MCS) procedure is applied. Our experimental results demonstrate that there is no single best method for forecasting volatility of each cryptocurrency, and different models may perform better depending on the specific cryptocurrency, choice of the error metric and forecast horizon. For daily forecasts, the method that is always found in a set of best models is linear SVR, while for weekly forecasts, there are two such methods, namely FNM and RR. Furthermore, we show that simple linear models such as HAR and ridge regression, perform not worse than more complex models like LSTM and RF. The research provides a useful reference point for the development of more sophisticated models.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Volatility forecasting and volatility-timing strategies: A machine learning approach
    Chun, Dohyun
    Cho, Hoon
    Ryu, Doojin
    RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2025, 75
  • [32] Using machine learning techniques to combine forecasting methods
    Prudêncio, R
    Ludermir, T
    AI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3339 : 1122 - 1127
  • [33] Long Term Forecasting using Machine Learning Methods
    Sangrody, Hossein
    Zhou, Ning
    Tutun, Salih
    Khorramdel, Benyamin
    Motalleb, Mahdi
    Sarailoo, Morteza
    2018 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2018,
  • [34] Demand forecasting in restaurants using machine learning and statistical analysis
    Tanizaki, Takashi
    Hoshino, Tomohiro
    Shimmura, Takeshi
    Takenaka, Takeshi
    12TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2019, 79 : 679 - 683
  • [35] A Comparative Study of Traditional Statistical Methods and Machine Learning Techniques for Improved Predictive Models
    Alanazi, Bader S.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [36] A comparative study between popular statistical and machine learning methods for simulating volume of landslides
    Shirzadi, Ataollah
    Shahabi, Himan
    Chapi, Kamran
    Dieu Tien Bui
    Binh Thai Pham
    Shahedi, Kaka
    Bin Ahmad, Baharin
    CATENA, 2017, 157 : 213 - 226
  • [37] Forecasting and trading cryptocurrencies with machine learning under changing market conditions
    Helder Sebastião
    Pedro Godinho
    Financial Innovation, 7
  • [38] Forecasting and trading cryptocurrencies with machine learning under changing market conditions
    Sebastiao, Helder
    Godinho, Pedro
    FINANCIAL INNOVATION, 2021, 7 (01)
  • [39] Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies
    Miller, Dante
    Kim, Jong-Min
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (10)
  • [40] Forecasting monthly copper price: A comparative study of various machine learning-based methods
    Zhang, Hong
    Hoang Nguyen
    Diep-Anh Vu
    Xuan-Nam Bui
    Pradhan, Biswajeet
    RESOURCES POLICY, 2021, 73