An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes

被引:17
|
作者
Sai, M. Jishnu [1 ]
Chettri, Pratiksha [1 ]
Panigrahi, Ranjit [2 ]
Garg, Amik [3 ]
Bhoi, Akash Kumar [3 ,4 ,5 ]
Barsocchi, Paolo [5 ]
机构
[1] Sikkim Manipal Univ, Sikkim Manipal Inst Technol, Dept Elect & Elect Engn, Majitar, Sikkim, India
[2] Sikkim Manipal Univ, Sikkim Manipal Inst Technol, Dept Comp Applicat, Majitar, Sikkim, India
[3] KIET Grp Inst, Delhi NCR, Ghaziabad 201206, India
[4] Sikkim Manipal Univ, Directorate Res, Gangtok 737102, Sikkim, India
[5] CNR, Inst Informat Sci & Technol, I-56124 Pisa, Italy
关键词
k-NN; Light GBM (Gradient Boosting Machine); Naive Bayes (Gaussian); Random forest; Classifier ensemble; Diabetes detection; CLASSIFICATION;
D O I
10.1007/s44196-023-00184-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accuracy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The k-NN, Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that k-NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] RANDOMIZED GRADIENT BOOSTING MACHINE
    Lu, Haihao
    Mazumder, Rahul
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 2780 - 2808
  • [22] Solar Flare Prediction Using Two-tier Ensemble with Deep Learning and Gradient Boosting Machine
    Pham, Chau
    Pham, Vung
    Dang, Tommy
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5844 - 5853
  • [23] Diagnosis of Diabetes Mellitus Using Gradient Boosting Machine (LightGBM)
    Rufo, Derara Duba
    Debelee, Taye Girma
    Ibenthal, Achim
    Negera, Worku Gachena
    DIAGNOSTICS, 2021, 11 (09)
  • [24] PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine
    Deng, Lei
    Pan, Juan
    Xu, Xiaojie
    Yang, Wenyi
    Liu, Chuyao
    Liu, Hui
    BMC BIOINFORMATICS, 2018, 19
  • [25] PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine
    Lei Deng
    Juan Pan
    Xiaojie Xu
    Wenyi Yang
    Chuyao Liu
    Hui Liu
    BMC Bioinformatics, 19
  • [26] Solar Flare Prediction and Feature Selection Using a Light-Gradient-Boosting Machine Algorithm
    Vysakh, P. A.
    Mayank, Prateek
    SOLAR PHYSICS, 2023, 298 (11)
  • [27] Light Gradient Boosting Machine-Based Link Quality Prediction for Wireless Sensor Networks
    Liu, Linlan
    Niu, Mingxiao
    Zhang, Chao
    Shu, Jian
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [28] Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient Boosting Machine
    Chen, Tingting
    Xu, Jun
    Ying, Haochao
    Chen, Xiaojun
    Feng, Ruiwei
    Fang, Xueling
    Gao, Honghao
    Wu, Jian
    IEEE ACCESS, 2019, 7 : 150960 - 150968
  • [29] Herding Exploring Algorithm With Light Gradient Boosting Machine Classifier for Effective Prediction of Heart Diseases
    Bhavekar, Girish S.
    Das Goswami, Agam
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2022, 13 (01)
  • [30] A Light Gradient Boosting Machine-Enabled Early Prediction of Cardiotoxicity for Breast Cancer Patients
    Jiang, Z.
    Diao, P.
    Liang, Y.
    Dai, K.
    Li, H.
    Wang, H.
    Chen, Y.
    Man, L.
    Kuang, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E223 - E223