Unique continuation for the Lame system using stabilized finite element methods

被引:0
|
作者
Burman, Erik [1 ]
Preuss, Janosch [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Lame system; Unique continuation; Finite element methods; Conditional Holder stability; PREASYMPTOTIC ERROR ANALYSIS; HELMHOLTZ-EQUATION; INVERSE PROBLEM; CIP-FEM;
D O I
10.1007/s13137-023-00220-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an arbitrary order, stabilized finite element method for solving a unique continuation problem subject to the time-harmonic elastic wave equation with variable coefficients. Based on conditional stability estimates we prove convergence rates for the proposed method which take into account the noise level and the polynomial degree. A series of numerical experiments corroborates our theoretical results and explores additional aspects, e.g. how the quality of the reconstruction depends on the geometry of the involved domains. We find that certain convexity properties are crucial to obtain a good recovery of the wave displacement outside the data domain and that higher polynomial orders can be more efficient but also more sensitive to the ill-conditioned nature of the problem.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Stabilized Finite Element Methods for the Schrodinger Wave Equation
    Kannan, Raguraman
    Masud, Arif
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2009, 76 (02): : 1 - 7
  • [22] Stabilized finite element methods for the generalized Oseen problem
    Braack, M.
    Burman, E.
    John, V.
    Lube, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) : 853 - 866
  • [23] Stabilized Finite Element Methods for the Oberbeck–Boussinesq Model
    Helene Dallmann
    Daniel Arndt
    Journal of Scientific Computing, 2016, 69 : 244 - 273
  • [24] CONSISTENT LOCAL PROJECTION STABILIZED FINITE ELEMENT METHODS
    Barrenechea, Gabriel R.
    Valentin, Frederic
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) : 1801 - 1825
  • [25] Optimal control of the convection-diffusion equation using stabilized finite element methods
    Becker, Roland
    Vexler, Boris
    NUMERISCHE MATHEMATIK, 2007, 106 (03) : 349 - 367
  • [26] A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty
    Burman, Erik
    SIAM J Numer Anal, 1600, 5 (2012-2033):
  • [27] Space-time finite element methods stabilized using bubble function spaces
    Toulopoulos, Ioannis
    APPLICABLE ANALYSIS, 2020, 99 (07) : 1153 - 1170
  • [28] PROGRESSIVE WAVE SIMULATION USING STABILIZED EDGE-BASED FINITE ELEMENT METHODS
    Elias, Renato N.
    Goncalves, Milton A., Jr.
    Esperanca, Paulo T. T.
    Coutinho, Alvaro L. G. A.
    Martins, Marcos A. D.
    Ferreira, Marcos D. A. S.
    OMAE 2009, VOL 5, 2009, : 621 - 631
  • [29] A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty
    Burman, E
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 2012 - 2033
  • [30] Optimal control of the convection-diffusion equation using stabilized finite element methods
    Roland Becker
    Boris Vexler
    Numerische Mathematik, 2007, 106 : 349 - 367