Unique continuation for the Lame system using stabilized finite element methods

被引:0
|
作者
Burman, Erik [1 ]
Preuss, Janosch [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Lame system; Unique continuation; Finite element methods; Conditional Holder stability; PREASYMPTOTIC ERROR ANALYSIS; HELMHOLTZ-EQUATION; INVERSE PROBLEM; CIP-FEM;
D O I
10.1007/s13137-023-00220-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an arbitrary order, stabilized finite element method for solving a unique continuation problem subject to the time-harmonic elastic wave equation with variable coefficients. Based on conditional stability estimates we prove convergence rates for the proposed method which take into account the noise level and the polynomial degree. A series of numerical experiments corroborates our theoretical results and explores additional aspects, e.g. how the quality of the reconstruction depends on the geometry of the involved domains. We find that certain convexity properties are crucial to obtain a good recovery of the wave displacement outside the data domain and that higher polynomial orders can be more efficient but also more sensitive to the ill-conditioned nature of the problem.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Unique continuation for the Lamé system using stabilized finite element methods
    Erik Burman
    Janosch Preuss
    GEM - International Journal on Geomathematics, 2023, 14
  • [2] Unique continuation for the Helmholtz equation using stabilized finite element methods
    Burman, Erik
    Nechita, Mihai
    Oksanen, Lauri
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 129 : 1 - 22
  • [3] Space time stabilized finite element methods for a unique continuation problem subject to the wave equation
    Burman, Erik
    Feizmohammadi, Ali
    Muench, Arnaud
    Oksanen, Lauri
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S969 - S991
  • [4] Strong unique continuation for the Lame system of elasticity
    Alessandrini, G
    Morassi, A
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (9-10) : 1787 - 1810
  • [5] PROPERTY OF UNIQUE CONTINUATION FOR AN ELLIPTIC SYSTEM - LAME SYSTEM
    DEHMAN, B
    ROBBIANO, L
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1993, 72 (05): : 475 - 492
  • [6] Strong unique continuation for the Lame system with Lipschitz coefficients
    Lin, CL
    Wang, JN
    MATHEMATISCHE ANNALEN, 2005, 331 (03) : 611 - 629
  • [7] Strong unique continuation for the Lame system with less regular coefficients
    Davey, Blair
    Lin, Ching-Lung
    Wang, Jenn-Nan
    MATHEMATISCHE ANNALEN, 2020, 381 (1-2) : 1005 - 1029
  • [8] Unique continuation for a stationary isotropic Lame system with variable coefficients
    Ang, DD
    Ikehata, M
    Trong, DD
    Yamamoto, M
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (1-2) : 371 - 385
  • [9] QUANTITATIVE STRONG UNIQUE CONTINUATION FOR THE LAME SYSTEM WITH LESS REGULAR COEFFICIENTS
    Lin, C. -L.
    Nakamura, G.
    Uhlmann, G.
    Wang, J. -N.
    METHODS AND APPLICATIONS OF ANALYSIS, 2011, 18 (01) : 85 - 92
  • [10] STRONG UNIQUE CONTINUATION FOR THE LAME SYSTEM WITH LIPSCHITZ COEFFICIENTS IN THREE DIMENSIONS
    Yu, Hang
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (03) : 761 - 770