Mechanism of CO2 Electroreduction to Multicarbon Products over Iron Phthalocyanine Single-Atom Catalysts

被引:6
|
作者
Khakpour, Reza [1 ]
Farshadfar, Kaveh [1 ]
Dong, Si-Thanh [2 ]
Lassalle-Kaiser, Benedikt [2 ]
Laasonen, Kari [1 ]
Busch, Michael [3 ,4 ]
机构
[1] Aalto Univ, Sch Chem Engn, Dept Chem & Mat Sci, Espoo 02150, Finland
[2] Synchrotron SOLEIL, F-91190 St Aubin, France
[3] Lulea Univ Technol, Dept Engn Sci & Math, Div Mat Sci, S-97187 Lulea, Sweden
[4] Lulea Univ Technol, Wallenberg Initiat Mat Sci Sustainabil WISE, S-97187 Lulea, Sweden
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 14期
关键词
REDUCTION; ELECTROCATALYSTS; PSEUDOPOTENTIALS; DESIGN;
D O I
10.1021/acs.jpcc.3c08347
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon dioxide reduction reaction (CO2RR) is a promising method for converting CO2 into value-added products. CO2RR over single-atom catalysts (SACs) is widely known to result in chemical compounds such as carbon monoxide and formic acid that contain only one carbon atom (C1). Indeed, at least two active sites are commonly believed to be required for C-C coupling to synthesize compounds, such as ethanol and propylene (C2+), from CO2. However, experimental evidence suggests that iron phthalocyanine (PcFe), which possesses only a single metal center, can produce a trace amount of C2+ products. To the best of our knowledge, the mechanism by which C2+ products are formed over a SAC such as PcFe is still unknown. Using density functional theory (DFT), we analyzed the mechanism of the CO2RR to C1 and C2+ products over PcFe. Due to the high concentration of bicarbonate at pH 7, CO2RR competes with HCO3- reduction. Our computations indicate that bicarbonate reduction is significantly more favorable. However, the rate of this reaction is influenced by the H3O+ concentration. For the formation of C2+ products, our computations reveal that C-C coupling proceeds through the reaction between in situ-formed CO and PcFe("0")-CH2 or PcFe("-I")-CH2 intermediates. This reaction step is highly exergonic and requires only low activation energies of 0.44 and 0.24 eV for PcFe("0")-CH2 and PcFe("-I")-CH2. The DFT results, in line with experimental evidence, suggest that C2+ compounds are produced over PcFe at low potentials whereas CH4 is still the main post-CO product.
引用
收藏
页码:5867 / 5877
页数:11
相关论文
共 50 条
  • [21] Highly Efficient Electroreduction of CO2 on Nickel Single-Atom Catalysts: Atom Trapping and Nitrogen Anchoring
    Mou, Kaiwen
    Chen, Zhipeng
    Zhang, Xinxin
    Jiao, Mingyang
    Zhang, Xiangping
    Ge, Xin
    Zhang, Wei
    Liu, Licheng
    SMALL, 2019, 15 (49)
  • [22] Lanthanide single-atom catalysts for efficient CO2-to-CO electroreduction
    Wang, Qiyou
    Luo, Tao
    Cao, Xueying
    Gong, Yujie
    Liu, Yuxiang
    Xiao, Yusen
    Li, Hongmei
    Groebmeyer, Franz
    Lu, Ying-Rui
    Chan, Ting-Shan
    Ma, Chao
    Liu, Kang
    Fu, Junwei
    Zhang, Shiguo
    Liu, Changxu
    Lin, Zhang
    Chai, Liyuan
    Cortes, Emiliano
    Liu, Min
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [23] Activity and Selectivity Control in CO2 Electroreduction to Multicarbon Products over CuOx Catalysts via Electrolyte Design
    Gao, Dunfeng
    McCrum, Ian T.
    Deo, Shyam
    Choi, Yong-Wook
    Scholten, Fabian
    Wan, Weiming
    Chen, Jingguang G.
    Janik, Michael J.
    Roldan Cuenya, Beatriz
    ACS CATALYSIS, 2018, 8 (11): : 10012 - +
  • [24] Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO
    Guo, Yibo
    Yao, Sai
    Xue, Yuanyuan
    Hu, Xu
    Cui, Huijuan
    Zhou, Zhen
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 304
  • [25] Regulating Morphological Features of Nickel Single-Atom Catalysts for Selective and Enhanced Electroreduction of CO2
    Li, Lei
    Jiang, Zhan
    Li, Yanyan
    Li, Fayan
    Pan, Yingying
    Zhang, Xinyu
    Liang, Yongye
    Zheng, Zhiping
    SMALL METHODS, 2023, 7 (01)
  • [26] Structural rule of heteroatom-modified single-atom catalysts for the CO2 electroreduction reaction
    Sui, Xinyuan
    Yuan, Haiyang
    Hou, Yu
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 13 (01) : 638 - 644
  • [27] The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO2
    Jia C.
    Shi Z.
    Zhao C.
    Current Opinion in Green and Sustainable Chemistry, 2022, 37
  • [28] Carbon-based single-atom catalysts for CO2 electroreduction: progress and optimization strategies
    Lu, Xiu-Li
    Rong, Xin
    Zhang, Chao
    Lu, Tong-Bu
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (21) : 10695 - 10708
  • [29] Applications of Single-atom Catalysts in CO2 Conversion
    Qin Yongji
    Luo Jun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (09):
  • [30] Edge-Site Co-N x Model Single-Atom Catalysts for CO2 Electroreduction
    Cheng, Yao-Ti
    Peng, Jian-Zhao
    Lai, Guo-Tao
    Yue, Xian
    Li, Fu-Zhi
    Wang, Qing
    Chen, Li-Na
    Gu, Jun
    ACS CATALYSIS, 2024, 14 (11): : 8446 - 8455