Semi-supervised learning for steel surface inspection using magnetic flux leakage signal

被引:3
|
作者
Park, Jae-Eun [1 ]
Kim, Young-Keun [1 ]
机构
[1] Handong Global Univ, Dept Mech & Control Engn, Pohang 37554, South Korea
关键词
Steel surface inspection; Magnetic flux leakage (MFL); Semi-supervised learning; Dimensionality reduction; Autoencoder; Semi-supervised support vector machine (S3VM);
D O I
10.1007/s10845-023-02286-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a semi-supervised learning model for detecting multi-defect classification and localization on the steel surface for industries with limited labeled datasets. This study uses 1-D data from magnetic flux leakage (MFL) testing, a powerful and cost-effective nondestructive inspection method for steel bars. Most steel surface defect systems are based on supervised learning classification with 2-D image datasets. However, acquiring labeled datasets for developing supervised learning models is practically limited in the actual steel manufacturing process. Furthermore, due to the frequent occurrence of multiple defect classes on the same steel bar, the problem of multi-defect classification and localization needs to be addressed. Therefore, this paper proposes a steel bar surface inspection system for multi-defect classification and localization based on a semi-supervised learning model and MFL signals. The proposed system solves the multi-defect classification and localization problem by reducing the feature dimension with an autoencoder. Then, it classifies the defects based on the semi-supervised support vector machines that require only a small portion of the labeled dataset. Also, the classification process is repeated on the overlapped small steel section to address the multi-defect classification and localization issue. When it was evaluated on an industry MFL inspection dataset, the accuracy ranged from 81% to 90% when the labeled data ratio varied from 2% to 90%.
引用
收藏
页码:1021 / 1031
页数:11
相关论文
共 50 条
  • [31] A survey on semi-supervised learning
    Jesper E. van Engelen
    Holger H. Hoos
    Machine Learning, 2020, 109 : 373 - 440
  • [32] Semi-supervised Sequence Learning
    Dai, Andrew M.
    Le, Quoc V.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [33] Semi-supervised learning by disagreement
    Zhi-Hua Zhou
    Ming Li
    Knowledge and Information Systems, 2010, 24 : 415 - 439
  • [34] Semi-Supervised Incremental Learning
    Bouchachia, Abdelhamid
    Prossegger, Markus
    Duman, Hakan
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [35] Semi-Supervised Radio Signal Identification
    O'Shea, Timothy J.
    West, Nathan
    Vondal, Matthew
    Clancy, T. Charles
    2017 19TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATIONS TECHNOLOGY (ICACT) - OPENING NEW ERA OF SMART SOCIETY, 2017, : 33 - 38
  • [36] Semi-Supervised Learning by Disagreement
    Zhou, Zhi-Hua
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 93 - 93
  • [37] Deep Semi-Supervised Learning
    Hailat, Zeyad
    Komarichev, Artem
    Chen, Xue-Wen
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2154 - 2159
  • [38] Reliable Semi-supervised Learning
    Shao, Junming
    Huang, Chen
    Yang, Qinli
    Luo, Guangchun
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1197 - 1202
  • [39] Semi-supervised Learning with Transfer Learning
    Zhou, Huiwei
    Zhang, Yan
    Huang, Degen
    Li, Lishuang
    CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA, 2013, 8208 : 109 - 119
  • [40] Semi-supervised learning with dropouts
    Abhishek
    Yadav, Rakesh Kumar
    Verma, Shekhar
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 215