Extended Multi-Component Gated Recurrent Graph Convolutional Network for Traffic Flow Prediction

被引:4
|
作者
Zhao, Junhui [1 ,2 ]
Xiong, Xincheng [1 ]
Zhang, Qingmiao [1 ]
Wang, Dongming [3 ]
机构
[1] East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
[2] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[3] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 211189, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Roads; Convolutional neural networks; Sensors; Predictive models; Feature extraction; Correlation; Data models; Traffic flow prediction; spatial-temporal features; extended multi-component; external interactive gated recurrent unit; graph convolutional network; KALMAN FILTER; SYSTEMS;
D O I
10.1109/TITS.2023.3322745
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic flow prediction is a difficult undertaking in transportation systems, due to the intricate periodicity and real-time dynamics for traffic data, spatial-temporal dependency for road networks, existing prediction approaches fail to yield satisfactory results. We propose a traffic flow prediction method named Extended Multi-component External Interactive Gated Recurrent Graph Convolutional Network (EMGRGCN). The extended multi-component (EMC) module is incorporated into the prediction model to address the periodic temporal diffusion problem. Then, we introduce an encoder-decoder architecture that incorporates attention mechanism to capture spatial-temporal dependencies. Specifically, an External Interactive Gated Recurrent Unit (EIGRU) is utilized to capture crucial temporal features. EIGRU and graph convolutional network are combined in the encoder to extract spatial-temporal correlation, and EIGRU and convolutional neural network based decoder transforms the spatial-temporal characteristics into a sequence to predict future traffic flows. Experiments on public transportation datasets PEMSD8 and PEMSD4 demonstrate that EMGRGCN model achieves the best performance.
引用
收藏
页码:4634 / 4644
页数:11
相关论文
共 50 条
  • [31] Traffic Flow Prediction Based on Multi-Spatiotemporal Attention Gated Graph Convolution Network
    Ge, Yun
    Zhai, Jian F.
    Su, Pei C.
    Journal of Advanced Transportation, 2022, 2022
  • [32] Traffic Flow Prediction Based on Multi-Spatiotemporal Attention Gated Graph Convolution Network
    Ge, Yun
    Zhai, Jian F.
    Su, Pei C.
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [33] Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
    Liu, Duanyang
    Xu, Xinbo
    Xu, Wei
    Zhu, Bingqian
    SENSORS, 2021, 21 (19)
  • [34] Highway traffic flow prediction model with multi-component spatial-temporal graph convolution networks
    Ning, Tao
    Han, Yumeng
    Wang, Jiayu
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [35] Parallel framework of a multi-graph convolutional network and gated recurrent unit for spatial-temporal metro passenger flow prediction
    Zhan, Shuguang
    Cai, Yi
    Xiu, Cong
    Zuo, Dajie
    Wang, Dian
    Wong, Sze Chun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [36] Traffic Flow Prediction Method Based on Fast Statistics of Traffic Flow and Graph Convolutional Network
    Jiang, Dan
    Hou, Qun
    Liu, Xin
    Gao, Shidi
    2023 IEEE 8th International Conference on Intelligent Transportation Engineering, ICITE 2023, 2023, : 54 - 59
  • [37] TARGCN: temporal attention recurrent graph convolutional neural network for traffic prediction
    Yang, He
    Jiang, Cong
    Song, Yun
    Fan, Wendong
    Deng, Zelin
    Bai, Xinke
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 8179 - 8196
  • [38] Multibranch Adaptive Fusion Graph Convolutional Network for Traffic Flow Prediction
    Zan, Xin
    Lam, Jasmine Siu Lee
    JOURNAL OF ADVANCED TRANSPORTATION, 2023, 2023
  • [39] Interactive dynamic diffusion graph convolutional network for traffic flow prediction
    Zhang, Shuai
    Yu, Wangzhi
    Zhang, Wenyu
    INFORMATION SCIENCES, 2024, 677
  • [40] ADGCN: An Asynchronous Dilation Graph Convolutional Network for Traffic Flow Prediction
    Qi, Tao
    Li, Guanghui
    Chen, Lingqiang
    Xue, Yanming
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (05) : 4001 - 4014