Few-Shot Text Classification with an Efficient Prompt Tuning Method in Meta-Learning Framework

被引:1
|
作者
Lv, Xiaobao [1 ,2 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, 2 Southeast Univ Rd, Nanjing, Jiangsu, Peoples R China
[2] Zhongke Shuguang Nanjing Res Inst Co Ltd, 519 Chengxin Rd, Nanjing, Jiangsu, Peoples R China
关键词
Few-shot learning; meta-learning; prompt tuning; text classification; pre-trained language model;
D O I
10.1142/S0218001424510066
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Meta-learning stands as a prevalent framework utilized in few-shot learning methods. Nonetheless, its efficacy hinges on substantial data availability during meta-training. Recent work adeptly tackled this hurdle by synergizing prompt tuning with the meta-learning paradigm, consequently attaining unparalleled performance on four benchmarks (FewRel, HuffPost, Reuters and Amazon). Nonetheless, the implementation efficacy of the previous method leaves room for enhancement, which is especially crucial when tuning larger language models. To this end, we introduce another expedited prompt tuning approach nested within the meta-learning framework. The novel approach normalizes the label information and sample information and uses the regression method to obtain the closed-form solution of each few-shot task, which significantly enhances inference speed, achieving a twofold improvement, while concurrently elevating average accuracy by 1.7 similar to 3.0% on the same benchmarks. Moreover, it demonstrates enhanced stability when faced with limited meta-training data, which is more applicable in many real scenarios where parallel data is rare. The source code is available to reproduce the results (http://github.com/Dr-Lv/EMPT).
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A Method of Few-Shot Network Intrusion Detection Based on Meta-Learning Framework
    Xu, Congyuan
    Shen, Jizhong
    Du, Xin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 3540 - 3552
  • [22] Few-Shot Classification Based on Sparse Dictionary Meta-Learning
    Jiang, Zuo
    Wang, Yuan
    Tang, Yi
    MATHEMATICS, 2024, 12 (19)
  • [23] Prototype Bayesian Meta-Learning for Few-Shot Image Classification
    Fu, Meijun
    Wang, Xiaomin
    Wang, Jun
    Yi, Zhang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [24] MetaDelta: A Meta-Learning System for Few-shot Image Classification
    Chen, Yudong
    Guan, Chaoyu
    Wei, Zhikun
    Wang, Xin
    Zhu, Wenwu
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 17 - 28
  • [25] Meta-Learning for Multi-Label Few-Shot Classification
    Simon, Christian
    Koniusz, Piotr
    Harandi, Mehrtash
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 346 - 355
  • [26] Few-shot time series forecasting in a meta-learning framework
    Ma P.
    Ni Z.
    Ma, Ping (1533321767@qq.com), 1600, IOS Press BV (46): : 8903 - 8916
  • [27] Knowledge-Enhanced Prompt Learning for Few-Shot Text Classification
    Liu, Jinshuo
    Yang, Lu
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (04)
  • [28] Generative Probabilistic Meta-Learning for Few-Shot Image Classification
    Fu, Meijun
    Wang, Xiaomin
    Wang, Jun
    Yi, Zhang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [29] Meta-learning baselines and database for few-shot classification in agriculture
    Li, Yang
    Yang, Jiachen
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 182
  • [30] Decentralized federated meta-learning framework for few-shot multitask learning
    Li, Xiaoli
    Li, Yuzheng
    Wang, Jining
    Chen, Chuan
    Yang, Liu
    Zheng, Zibin
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 8490 - 8522