Inverting mechanical and variable-order parameters of the Euler-Bernoulli beam on viscoelastic foundation

被引:0
|
作者
Cheng, Jin [2 ]
Yang, Zhiwei [1 ]
Zheng, Xiangcheng [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Res Inst Intelligent Complex Syst, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Euler-Bernoulli beam; viscoelastic foundation; finite element scheme; inverse problem; DIFFERENTIAL-EQUATIONS; FRACTIONAL CALCULUS; POWER-LAW; MODELS;
D O I
10.1515/jiip-2023-0084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an inverse problem of determining the mechanical and variable-order parameters of the Euler-Bernoulli beam on viscoelastic foundation. For this goal, we develop a fully-discrete Hermite finite element scheme for this model and analyze the corresponding error estimates. The Levenberg-Marquardt method is then applied to determine the multiple parameters. Extensive numerical experiments are performed under practical settings to demonstrate the behavior of the proposed model and the efficiency of the algorithm.
引用
收藏
页码:261 / 275
页数:15
相关论文
共 50 条
  • [41] Analytical solutions for Euler-Bernoulli Beam on Pasternak foundation subjected to arbitrary dynamic loads
    Yu, H.
    Cai, C.
    Yuan, Y.
    Jia, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2017, 41 (08) : 1125 - 1137
  • [42] Boundary stabilization of a hybrid Euler-Bernoulli beam
    Gorain, GC
    Bose, SK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (04): : 411 - 416
  • [43] PARAMETER-ESTIMATION FOR THE EULER-BERNOULLI BEAM
    KUNISCH, K
    GRAIF, E
    MATEMATICA APLICADA E COMPUTACIONAL, 1985, 4 (02): : 95 - 124
  • [44] Observer for Euler-Bernoulli beam with hydraulic drive
    Egeland, O
    Kristiansen, E
    Nguyen, TD
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 4266 - 4267
  • [45] Vibration of the Euler-Bernoulli beam with allowance for dampings
    Herrmann, Leopold
    WORLD CONGRESS ON ENGINEERING 2008, VOLS I-II, 2008, : 901 - 904
  • [46] ON THE SCATTERING OF WAVES IN A NONUNIFORM EULER-BERNOULLI BEAM
    GLADWELL, GML
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1991, 205 (01) : 31 - 34
  • [47] SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM
    Zamorska, Izabela
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2014, 13 (04) : 157 - 162
  • [48] Dynamic Compensation of an Euler-Bernoulli beam with disturbances
    Wu, Xiao-Hui
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 436 - 441
  • [49] Dynamics and buckling loads for a vibrating damped Euler-Bernoulli beam connected to an inhomogeneous foundation
    Abramian, Andrei K.
    Vakulenko, Sergei A.
    van Horssen, Wim T.
    Lukichev, Dmitry V.
    ARCHIVE OF APPLIED MECHANICS, 2021, 91 (04) : 1291 - 1308
  • [50] The Gevrey class of the Euler-Bernoulli beam model
    Sozzo, Bruna T. S.
    Rivera, Jaime E. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)