Inverting mechanical and variable-order parameters of the Euler-Bernoulli beam on viscoelastic foundation

被引:0
|
作者
Cheng, Jin [2 ]
Yang, Zhiwei [1 ]
Zheng, Xiangcheng [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Res Inst Intelligent Complex Syst, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Euler-Bernoulli beam; viscoelastic foundation; finite element scheme; inverse problem; DIFFERENTIAL-EQUATIONS; FRACTIONAL CALCULUS; POWER-LAW; MODELS;
D O I
10.1515/jiip-2023-0084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an inverse problem of determining the mechanical and variable-order parameters of the Euler-Bernoulli beam on viscoelastic foundation. For this goal, we develop a fully-discrete Hermite finite element scheme for this model and analyze the corresponding error estimates. The Levenberg-Marquardt method is then applied to determine the multiple parameters. Extensive numerical experiments are performed under practical settings to demonstrate the behavior of the proposed model and the efficiency of the algorithm.
引用
收藏
页码:261 / 275
页数:15
相关论文
共 50 条
  • [1] Control of a viscoelastic translational Euler-Bernoulli beam
    Berkani, Amirouche
    Tatar, Nasser-eddine
    Khemmoudj, Ammar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) : 237 - 254
  • [2] Stabilization of a viscoelastic rotating Euler-Bernoulli beam
    Berkani, Amirouche
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2939 - 2960
  • [3] Vibration Control of a Viscoelastic Translational Euler-Bernoulli Beam
    Berkani, Amirouche
    Tatar, Nasser-eddine
    Kelleche, Abdelkarim
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (01) : 167 - 199
  • [4] Vibration Control of a Viscoelastic Translational Euler-Bernoulli Beam
    Amirouche Berkani
    Nasser-eddine Tatar
    Abdelkarim Kelleche
    Journal of Dynamical and Control Systems, 2018, 24 : 167 - 199
  • [5] Free vibration characteristics of an euler-bernoulli beam on a viscoelastic foundation based on nonlocal continuum theory
    Zhang, Dapeng
    Lei, Yongjun
    Zhendong yu Chongji/Journal of Vibration and Shock, 2017, 36 (01): : 88 - 95
  • [6] Analytical Solution for an Infinite Euler-Bernoulli Beam on a Viscoelastic Foundation Subjected to Arbitrary Dynamic Loads
    Yu, Haitao
    Yuan, Yong
    JOURNAL OF ENGINEERING MECHANICS, 2014, 140 (03) : 542 - 551
  • [7] The dynamics of an infinite uniform Euler-Bernoulli beam on bilinear viscoelastic foundation under moving loads
    Mazilu, Traian
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 2561 - 2566
  • [8] Viscoelastic Timoshenko beam solutions from Euler-Bernoulli solutions
    Wang, CM
    Yang, TQ
    Lam, KY
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1997, 123 (07): : 746 - 748
  • [9] Model Order Reduction of Nonlinear Euler-Bernoulli Beam
    Ilbeigi, Shahab
    Chelidze, David
    NONLINEAR DYNAMICS, VOL 1, 2017, : 377 - 385
  • [10] Analysis of a fractional viscoelastic Euler-Bernoulli beam and identification of its piecewise continuous polynomial order
    Li, Yiqun
    Wang, Hong
    Zheng, Xiangcheng
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) : 2337 - 2360